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Abstract—In our data driven world, categorization is of major
importance to help end-users and decision makers understanding
information structures. Supervised learning techniques rely on
annotated samples that are often difficult to obtain and train-
ing often overfits. On the other hand, unsupervised clustering
techniques study the structure of the data without disposing of
any training data. Given the difficulty of the task, supervised
learning often outperforms unsupervised learning. A compromise
is to use a partial knowledge, selected in a smart way, in order
to boost performance while minimizing learning costs, what
is called semi-supervised learning. In such use case, Spectral
Clustering proved to be an efficient method. Also, Deep Learning
outperformed several state of the art classification approaches
and it is interesting to test it in our context. In this paper, we
firstly introduce the concept of Deep Learning into an active
semi-supervised clustering process and compare it with Spectral
Clustering. Secondly, we introduce constraint propagation and
demonstrate how it maximizes partitioning quality while reducing
annotation costs. Experimental validation is conducted on two
different real datasets. Results show the potential of the clustering
methods.

I. INTRODUCTION

In our anywhere anytime connected world, the amount

of available multimedia information explodes. One has to

rely now on automatic tools to index and categorize these

huge amount of data in order to provide users with efficient

searching and browsing capabilities. In this context, our work

is focused on automatic categorization which is a critical point

for enabling the management of large databases. In challenging

situations, clustering, as a non-supervised approach, generally

provides unsatisfactory or even inappropriate results. Classi-

fication may solve this problem by using a fully annotated

data subset (training dataset). But this labelling requires costly

human expertise. It is therefore interesting to consider an

intermediate approach that uses only a partial knowledge i.e.,

the semi-supervised techniques.

Jain [1] describes two main types of partial knowledge:

• the partially labelled knowledge given by absolute class

annotations only known on a subset of the whole training

set. Furthermore, unlabelled data is used in the classifi-

cation process;

• the partially constrained knowledge that provides similar-

ity pairs annotations between multimedia objects. Com-

monly known as “Must Link” and “Cannot Link”, it

indicates if two objects belong or not to the same class.

Regarding last option, such pairwise constraints are generic

enough and can be provided via external knowledge, e.g.,

user input, user studies, etc. They can also be deduced from

the absolute class annotations. Furthermore, these are actually

similarity annotations that are easier to obtain compared to an

absolute class annotation.

In an online interactive process, semi-supervised clustering

can be enrolled into an iterative process in order to become

interactive. At each iteration, a supervision provides some

knowledge. In the case of a similarity based one, supervision

provides “Must Link” and “Cannot Link” constraints. Further-

more, if a pair selection strategy is taken into account, semi-

supervised clustering is made active. In such a framework,

state of the art approaches propose different semi-supervised

clustering methods to be compared. Selection strategies can

be random as in [2] or focus on specific pairs as in [3].

In view of this idea, it is of major interest to optimize the

constraints (i.e., annotated pairs) thus to maximize clustering

quality while minimizing the costs of user knowledge acqui-

sition. One of the most common strategies consists in using a

pairwise constraint automatic propagation approach [4]. This

will be one of the two aspects of this paper.

Clustering literature is rich [5], [6] and encompass classical

convex data clustering such as the simple k-means algorithm

to more complex approaches such as mixture-resolving, mode-

seeking approaches or artificial neural networks that are able

to cope with more difficult cluster representations.

One particular category of clustering relies on Spectral

Clustering Graph Cut techniques [7], that belong to manifold

learning. Such methods are preferred when dealing with non-

convex data clusters. However, standard Spectral Clustering

remains unsupervised and cannot benefit from external user

knowledge. Recent advances [3], [2] have shown the benefits

of introducing pairwise constraints to guide the clustering

procedure and provide some robust semi-supervised Spectral

Clustering algorithms. Such approaches gets closer to classi-

cal supervised techniques such as Support Vector Machines

(SVM) but manage cheaper annotations (similarities) than

absolute class names.
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Fig. 1. Interactive semi-supervised clustering.

Fig. 2. Active semi-supervised clustering.

Another way to perform clustering is to rely on the re-

cently popularized deep learning approaches. More specifi-

cally, Chopra et al [8] showed that it is possible to use stacks of

parallel neuron layers trained with sample pairs and similarity

ground truth. This allows a similarity metric to be learned

and inputs to be projected in a lower dimensional space. In

the projected space a simple clustering step such as k-means

allows the different classes to be identified. Such solution

naturally competes with the Spectral Clustering process in

order to address large scale clustering scenarios. In parallel,

in an online training use case, Bengio et al [9] showed that it

is possible to train a neural model only relying on the last ob-

served examples and still optimizing the generalization error.

Then, when dealing with large scale experiments involving

similarities, online Deep Learning approaches relying on a

siamese architecture sounds appealing.

Then, the second aspect of this paper will aim at comparing

Deep Learning and Spectral Clustering into an active semi-

supervised clustering schema in a bi-class context. We also get

an overview of the benefits provided by constraint propagation

for the two clustering methods. Experiments are conducted

on two datasets. The first one is provided by CMLIS from

the University of California at Irvine (UCI). The second one

comes from a video genre classification dataset [10].

The rest of the paper is organized as follows. Section II

presents current state of the art on semi-supervised clustering,

pairwise constraint propagation, Deep Learning and Spectral

Clustering. Section III present the architecture of our active

clustering process and how clustering methods are involved.

Section IV presents experimental results while Section V

concludes and discusses future work.

II. STATE OF THE ART

A. Semi-supervised clustering framework

Semi-supervised clustering, potentially being part of an

iterative process, may be used in an interactive way. As shown

Inconsistent constraints

Consistent constraints

Fig. 3. Critical constraints. ML are pictured as bold green lines and CL

constraints as thin red lines.

Rule 1 : ML+ML ⇒ ML

Rule 2 : ML+ CL ⇒ CL

Rule 3 : CL + CL ⇒ ML

Fig. 4. Pairwise constraints propagation in a 2-classes problem.

in figure 1, semi-supervision can be introduced by alternating

clustering and expert feedback retrieval. An expert (sometimes

called Oracle) usually has to observe object pairs and has to

assess one of the binary similarity labels, “Must Link” (ML,

same classe) or “Cannot Link” (CL, different classes) [11].

This interactive processing can be completed by an auto-

matic selection of the pairs to be submitted to the expert. No

choice is then left on the pairs to be supervised. Resulting

architecture is depicted in figure 2. This is the so called active

semi-supervised clustering [12].

Automatic selection can involve different strategies:

• by focusing on the most ambiguous pairs in the aim to get

a more informative decision [3]. However, the definition

of an “ambiguous pair” must be defined;

• by randomly selecting object pairs. This strategy is gen-

erally slightly less efficient. However it allows a fair

comparison between different semi-supervised clustering

approaches as shown by Rangapuram [2].

B. Pairwise Constraint propagation

In such an active semi-supervised clustering, one has to rely

on expert annotations. However, those may produce inconsis-

tent configurations as shown in figure 3. In order to be robust

against inconsistent configurations, a simple solution consists

in not facing the expert with the critical cases such as the one

depicted in figure 3. Furthermore, those critical configurations

can be automatically deduced using coherence rules thus

enriching the annotated pairs dataset without resorting to the

expert. This inference is called “automatic propagation of

constraints” [13].

In a 2-classes dataset, this automatic propagation is com-

posed of three rules as illustrated in figure 4.

The annotation framework being described, the clustering

problem has now to be considered.

C. Semi-supervised Deep Learning Clustering

Deep learning has been driving most of the attention since

2012 with the breakthrough performances obtained on large



Fig. 5. Typical siamese architecture [8]

scale image classification problems [14]. However neural net-

works revival was initiated years before and several architec-

tures where already proposed to fulfil today needs. Regarding

our topic, an efficient Deep Learning architecture dedicated

to metric learning was proposed in [8]. As shown in figure

5, it consists in a duplicated feed-forward neural net stack

with shared weights that is fed by two data samples, one per

branch. Each layer can be convolutional, fully connected with

state of the art non linearities and pooling methods as used for

classical feed forward architecture. Training is ensured by the

contrastive loss function shown in eq. 1 with binary similarity

s provided as ground-truth, d the (euclidian) distance between

pairs of elements in the projected space, b the number of

sample pairs per training batch and the separating margin
generally set to 1. Such loss is minimal when the distance in

the projected space of the last network layer corresponds to

the semantic distance given by ground truth. Once training has

been done, clustering can be performed using a simple convex

clustering algorithm such as k-means.

E =
1

2b

b∑

i=1

s(i)×d(i)2+(1−s(i))×max(margin−d(i),0)2 (1)

D. Semi-supervised Spectral Clustering

Spectral Clustering algorithms [7] are composed of three

steps: first a similarity graph between objects is built and

permits the computation of an adjacency matrix; then, a

projection is performed on a spectral space where clusters

are easier to identify; finally, a standard convex clustering is

performed in this new spectral space.

In order to introduce semi-supervision, different strategies

allow pairwise constraints to be taken into account at each of

the two first steps of the Spectral Clustering:

• during the similarity graph computation. For example, in

the Active Clustering (AC) [3], inspired from Spectral

Learning (SL) [15], constraints are introduced in the

adjacency matrix by setting values 1 for ML and 0
for CL. However, despite being low computational cost,

there is no guarantee for the constraints to be taken into

account;

• during the spectral graph computation [16] [17] [18]. In

our work, we chose the approach proposed by Rangapu-

ram [2] denoted “Constrained One-Spectral Clustering”

(COSC) where constraints are introduced in the con-

vex optimization problem based on a gradient descent

algorithm. Such method directly generates a 2-classes

Fig. 6. Active semi-supervised clustering process with random pair selection

Fig. 7. Active semi-supervised clustering process with random pair selection
and pairwise constraints propagation

partition and avoids the use of a final clustering technique

such as k-means. This approach can be extended to multi-

partition situations by recursive calls. In a 2-classes prob-

lem, COSC error rate systematically reaches down to zero

and ensures all the constraints to be taken into account

in contrary to other semi-supervised Spectral Clustering

methods. However, the drawback is processing time that

remains significantly higher than Spectral Learning.

III. USE CASE

A. Active semi-supervised clustering with pair random selec-

tion

From the framework described in section II-A, we build

a benchmarking architecture that enables clustering methods

comparison. Two test benches are proposed:

• The first one is shown in figure 6. It consists of an active

semi-supervised clustering that allows, for each loop, k
not annotated pairs to be randomly selected and to be

submitted to the Oracle. Once done, each loop ends with

a clustering step;

• The second test bench is shown in figure 7. In this

case, only one pair is randomly selected from all the

not annotated pairs and is submitted to the Oracle. Next,



the automatic constraint propagation described in [4] is

applied. This step guaranties that the maximum number

of supervision loops to perform equals the number of

considered individuals of the dataset. In the end, each

loop also ends with a clustering step.

B. Used Deep Learning Clustering architecture

We use a deep siamese architecture trained in an online way.

Clustering task is performed after each training step using k-

means on the projection of the input data at the final network

layer output. The basic idea is to update the model iteratively

at each clustering step of the proposed framework as long

as Oracle supervision and propagation provide new annotated

pairs. Compared to full retraining, the model is trained only

with the last annotated pairs thus reducing computational cost

while still ensuring global training error optimization. In such

context, the main challenge is the choice of the network

architecture and learning parameters that allows the model to

be trained reliably with respect to the available quantity of

training sample at each training period. In more detail, we

chose to make some of the parameters dependant on the batch

size b that defines how many samples are sent to the model in

a single training iteration. First the minimum number of new

annotated pairs that allows a clustering step to be launched is

defined as b × a. Regarding the framework proposed in the

previous section, the clustering step can thus be skipped if

too few pairs are available. By experimentally setting b = 20
and a in range [20;100], we allow a reasonable number of

supervision steps before allowing for a single clustering step.

Lower a, b values favour overfitting while high values would

inquire too many supervision steps before retraining. Next, the

target number of epoch per clustering step is experimentally

set to 20 in order to limit overfitting. Finally we apply early

stopping when training error cannot get lower after a period

of 1/2 of the target number epoch and we allow the system

to skip one training session if overfitting is observed. All

those presented cautions actually reveal the sensitivity of

the training parameters during the deep net training session.

Regarding the experimented deep architectures, we rely on a

cascade of 4 convolutional layers with 50 neurons each and

kernel size 3. ReLU non linearities finalize the process of

each convolution. Layer stride values switch between 1 and 3

alternating signal projection and pooling objectives. The final

layer is a fully connected one which number of neurons is set

to 2 to ensure a 2-D projection on the data. We report here

the architecture and the parameters configuration providing

the best results (fully connected architecture works worst).

This architecture experimented on two different datasets allows

some conclusions to be drawn when comparing Deep Learning

and Spectral Clustering while simplifying system description.

C. Used Spectral Clustering architecture

Regarding semi-supervised Spectral Clustering, we experi-

ment with the supervision options presented in section II-D.

The first method called “Spectral Clustering 1” relies on the

COSC algorithm that introduces constraints in the spectral

problem. Constraints are then considered during the spec-

tral graph computation. The second method called “Spectral

Clustering 2” also relies on the COSC algorithm. However

constraints are directly injected into the adjacency matrix thus

forcing the algorithm to consider constraints during the graph

computation as with Spectral Learning methods. Such strategy

allows the two types of constraint management to be compared

using the same low level clustering algorithms.

For both methods, we use the standardized normal distri-

bution of all values on each attribute. We then construct the

similarity matrix using a search of the k-nearest neighbours

k ≈ log(n) (n being the number of individuals of the dataset),

and using a Gaussian weighting.

IV. EXPERIMENTAL RESULTS

Experiments are conducted on two bi-class datasets. The

first one is “Sonar” provided by the Center for Machine

Learning and Intelligent Systems (CMLIS) from the University

of California at Irvine (UCI). It consists of 208 objects

described by vectors of size 60 normalized between 0 and

1. The second one is a collection of videos from the dataset

Blip10000 [10]. It consists of 2431 video of two genres “music

and entertainment” and “technology”. Each video is described

from its audio channel by a non standardized real-valued 196

attributes long vector described in [19].

To assess clustering quality, we use the Normalized Rand

Index (NRI) [20] which measures the similarity between two

clustering results, i.e. ground truth and our system clustering

results. Its main advantage is to consider its values between

−1 and 1. The 1 value stands for identical partitions while 0
indicates untied partitions. -1 refers to contradictory partitions

which does not generally occur in practice in this context.

Experimental results are presented in the four figures 8, 9,

10 and 11 where the x-axis corresponds to the number of

pairs supervised by the Oracle and the y-axis indicates the

NRI values. The different curves represent the NRI evolution

for the three methods (Deep Learning and Spectral Clustering

1 or 2) throughout the iterations of the active semi-supervised

process with pair random selection with or without constraint

propagation. All curves are the average of at least 5 executions

per method.

Figure 8 shows the results of the first test bench without

propagation using the Sonar dataset. We can note that the

three methods have highly different behaviours. Spectral Clus-

tering 1, which fully respects the constraints, reaches perfect

clustering after 700 supervised pairs. In this case, it is the

best clustering method. Spectral Clustering 2 converges less

quickly (after 800 supervised pairs). The weaker performance

can be explained by the fact that this method cannot take all

constraints into account: they are injected into the adjacency

matrix and they weakly constrain clustering. Regarding the

Deep Learning approach, NRI value is abruptly non zero only

after several hundred annotations once enough annotated pairs

are available. Next it has a slower convergence than the other

two methods. We can assume that this lowest performance



Fig. 8. Active semi-supervised clustering without propagation on Sonar
dataset (208 objects - 2 classes).

Fig. 9. Active semi-supervised clustering with (and without) propagation on
Sonar dataset (208 objects - 2 classes).

comes from the classical need of a large quantity of annotated

data for efficient Deep Learning training.

Figure 9 shows the results of the second test bench with

propagation on the same Sonar dataset. We can note the

scale change of the x-axis (Oracle supervision steps) that

is a consequence of the pairwise automatic propagation. To

allow comparison, results given in figure 8 are repeated in

figure 9 with thin curves. The number of annotated pairs

due to propagation is dramatically higher than the number

of supervised pairs: after 208 supervised pairs, we obtain

the annotation of all of the 21,528 existing pairs. Regarding

Spectral Clustering methods, the two methods allow a perfect

clustering at the end of those 208 supervisions. The perfor-

mances are also better after the iterations 120 or 140. This

shows that propagation boosts the two methods. Regarding

the Deep Learning approach, one can observe that its per-

formances now reach an intermediate level between the two

Spectral Clustering methods. Thanks to the huge increase of

annotated data and a network architecture that fits with the

data, clustering converges to a significantly faster way. In a real

use case scenario such method would allow Oracle supervision

to be stopped much earlier while obtaining a more satisfying

Fig. 10. Active semi-supervised clustering without propagation on Technol-
ogy and Music genres of the MediaEval dataset (2431 videos - 2 classes).

Fig. 11. Active semi-supervised clustering with (and without) propagation
on Technology and Music genres of the MediaEval dataset (2431 videos - 2
classes).

clustering quality.

Moving to the second dataset, figure 10 shows the results of

the first test bench without propagation using the Technology

and Music genres of the MediaEval dataset. Similarly to the

Sonar dataset, Spectral Clustering 1 obtains perfect clustering

after 9,000 Oracle supervisions. Spectral Clustering 2 reaches

the goal after 20,000 supervised pairs. However, regarding

the Deep Learning approach, results strongly differs from

the first observations. First, with a = 20, clustering starts

after 600 supervised pairs obtained and it reaches a clustering

performance of 0.27. Next, performance increase remains slow

until 10,000 supervised pairs. 0.45 NRI value is reached but

remains below the other clustering methods. Beyond this point,

deep net training interrupts because of gradient explosion

during training.

Figure 11 shows the results of the second test bench with

constraint propagation on the same MediaEval dataset. Thin

curves of figure 10 are represented again to compare the

two test benches. Spectral Clustering methods show similar

behaviours compared to the ones obtained with the Sonar

dataset and both ensure perfect clustering with 2431 super-



Fig. 12. Deep Learning embedding of the MediaEval samples (2431 videos -
2 classes). Colors encode ground truth labels Technology and Music genres.

vised pairs. The Deep Learning approach presents the same

early interruption observed without propagation. However,

before this stop point, the proposed neural architecture quality

reaches still an intermediate level between the two Spectral

Clustering methods. Nevertheless, early clustering interruption

remains a problem. A lot of tests with different parameter

values (particularly concerning learning rate) have been un-

successfully performed. So, the proposed network architecture

is questionable. As an illustration, two tests are shown in

figure 11 with two different values for parameter a (case

(1): a = 20, case (2): a = 80). In the second case, start

and stop are delayed compared to the first case. This allow

an higher final performance. To avoid gradient explosion and

extend the curves, batch normalization could be experimented

but architectural network should be preferred for a better data

adaptation.

Figure 12 shows the last valuable obtained 2-D projection

of the data samples colored with ground truth labels. One can

observe that embedding could allow for a nearly correct quality

clustering. However the final k-means provides only a 0.45

NRI value. This shows the difficulty of the use of a deep net

system, from the architectural design task to the parameters

optimisation steps to adapt to specific data. On the contrary

Spectral Clustering is almost parameter free. However in large

scale configuration, due to the use of a similarity matrix,

Spectral Clustering becomes computationally untrackable.

V. CONCLUSION

This paper presents a comparison between Deep Learn-

ing and Spectral Clustering in two active semi-supervised

clustering test benches. It allows both clustering methods to

be compared with and without automatic pairwise constraint

propagation. We experiment with two real-world datasets. The

first contribution of this paper addresses the comparison of

Deep Learning versus Spectral Clustering. It can be noted

that Deep Learning is conditioned by an accurate design and

parameter setup of the deep architecture. Second, this paper

shows the impressive improvements provided by propaga-

tion for both clustering methods. We recommend the use of

propagation since it strongly reduces the cost of constraint

acquisition and facilitates clustering quality convergence. This

is particularly of interest with Deep Learning that always

benefits from large data amounts for efficient training.

Further work will address Deep Learning with pairwise

constraint propagation. An immediate perspective is to adjust

siamese architecture to several multimedia datasets. An other

perspective is to compare such approach to state of the art

supervised classification techniques in challenges such as

MediaEval and study complementarity between Deep Learning

and Spectral Clustering.
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