
Semi-supervised Spectral Clustering with
automatic propagation of pairwise constraints

Nicolas Voiron 1 , Alexandre Benoit 1 , Andreï Filip 2 , Patrick Lambert 1 et Bogdan Ionescu 2

1 : LISTIC, University Savoie Mont Blanc, 74940, Annecy le Vieux, France
{nicolas.voiron, alexandre.benoit, patrick.lambert}@univ-smb.fr

2 : LAPI, University Politehnica of Bucharest, 061071, Bucharest, Romania
{afilip, bionescu}@alpha.imag.pub.ro

N. Voiron CBMI 2015     1 / 27



Table of contents

1.  Context

2.  State of the art
– Contraint propagation

– Adding knowledge into iterative process

3.  Our contributions
– Identification of 2 different benefits of the propagation

– Contraint propagation generalization

– The complet process of our method

4.  Results

– Propagation impact

– Clustering quality with built and real data

5.  Conclusion and perspectives

  Context State of the art Contributions Results Conclusion

N. Voiron CBMI 2015     2 / 27



Semi-supervised clustering

● How to guide an automatic clustering ?

– An iterative process

– Knowledge added at each iteration with calls to an Oracle
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Semi-supervised Spectral 
Clustering

● Which clustering method to choose ?

– We focus on Spectral Clustering that works by connectivity 
identification and is able to identify non-convex clusters
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Semi-supervised Spectral 
Clustering with pairwise constraints

● How can an Oracle contribute ?

– Absolute class annotation
 is harder than 
comparison class

– Pairwise constraints 
Must Link and 
Cannot Link 
easily indicate 
if two objects 
belongs or not 
to the same class
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Context summary and contributions

● Specifications:

– An iterative process

– Knowledge added at each iteration with calls to an Oracle
● Technical choice:

– Spectral Clustering

– Supervision by adding pairwise constraints
Must Link and Cannot Link

● Contributions:

– Accelerate the clustering
process by propagating 
links (constraints) 
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Contraint propagation
state of the art

● Rule 1: ML+ML=>ML

● Rule 2: ML+CL=>CL

● Rule 3:

– 2 classes : CL+CL=>ML

– n classes : CL+CL=>?
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Taking advantage of the propagation
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Oracle knowledge introduction
● Active Clustering

=> Constraints not always
     respected
=> Fast

C. Xiong, D. Johnson, J. J. Corso
« Active Clustering with Model-Based 
Uncertainty Reduction »
CoRR 2014

● COSC 
=> Better (up to perfect)
     constraint respect
=> Slow

S. S. Rangapuram and M. Hein
« Constrained 1-spectral clustering »
in Proceedings of the 15th International 
Conference on AISTATS 2012
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1st benefit of constraint propagation 

● Only call the Oracle when necessary to reduce annotation and 
clustering computationnal costs
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2nd benefit of constraint propagation

● Some methods like « Active Clustering » [Xiong & al] add 
constraints in the adjacency matrix. Constraints are not 
necessarily respected by the Spectral Clustering step. 
Propagation amplifies the constraint respect for those methods
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Our contribution: 3rd rule 
generalization

● CL+CL => ?

- Large number of configurations to inspect (time consuming)

+ But those configurations are frequent (more CL than ML)

+ Cascade effect can be expected

2 classes

3 classes

4-7 classes
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The entire process of our method

Rule 1
ML+ML=>ML

Rule 2
ML+CL=>CL

Rule 3  
CL+...+CL=>ML   

When   

  stable   

in outSpectral
Clustering
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Propagation impact

● Propagation requires a sufficient set of connected objects

● Significant impact of the third rule
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Propagation impact
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● Similar results with a 3 classes problem

500



Bi-partitionning quality of built data

● A better quality score and faster

– Enforce both AC and COSC methods

– A simpler clustering method (AC) can reach a more complex method (COSC) 
partition quality
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Tri-partitionning quality of built data

● A better quality score and faster

– Enforce both AC and COSC methods

– AC is better than COSC in a 3 class problem
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Tri-partitionning of MediaEval data

● Sample with 100 videos taken into 3 classes 
of MediaEval challenge (Blip10000 - Audio Features)

● A better quality score and faster

– Still enforce both AC and COSC methods

– The total propagation raise the AC method up to the COSC method score
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Multi-partitionning of MediaEval data

● Sample with 5127 videos taken into the 26 classes
of MediaEval challenge (Blip10000 - Audio Features)

● A better quality score and faster

– Still enforce both AC and COSC methods

– Third rule requires optimized algorithms
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Conclusion and perspectives

● Conclusion

+   Strong clustering enhancement by the use of propagation

+   Benefit of the 3rd rule generalization

+   Enforce simple clustering methods

-   3rd rule is costly

● Perspectives

✗   Improving propagation algorithms for computationnal cost and scaling step

✗   Add constraint selection strategies amplifying the propagation benefits

✗   Build up a real-time annotation and propagation framework

✗   Experiment propagation with other clustering methods
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A first strategy perspective

● We call “random link selection” a first strategy amplifying the propagation benefit

● We restrict random pair selection to the subset of pairs having only one object 
connected to an already supervised pair

● On green curves we can see that the random linked selection strategy boosts 
propagation for all the rules from the beginning
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The applicative perspective

● With a lot of objects and classes, the propagation is expensive

● We don't want the Oracle waiting too much

● We can consider a process in which the Oracle comparison time is used to process 
the automatic constraint propagation

● After the clustering step, the Oracle supervises the constraints. During this time, the 
automatic propagation is proceeded. 
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Thanks for your attention

Questions
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