Offre de stage 2024/2025

Tituo	Classical CAS Classical methods for Concretive Audio Synthesis
Niveau	Classical GAS - Classical methods for Generative Audio Synthesis
	Février 2025-Aout 2025
	Annecy, France
	Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance - LISTIC
Description du sujet	
	Keywords : Audio synthesis, C/C++ programming, generative models, frugal AI, deep learning, Context : Signal-based audio synthesis methods like the ones described in [1] or [2] have seen a regain of interest recently
	after the introduction of the Differential Digital Signal Processing (DDSP) package [3]. It uses a neural architecture to produce control parameters for a signal-based synthesis method. The original DDSP implementation performs successfully in various audio synthesis tasks (synthesis, transfer,) using a Variational Autoencoder and a Sine plus noise generative model. It offers an expressive generative model without compromising explainability and control, as well as an opportunity for real time sound synthesis.
	In contrast, diffusion models lack interpretability and intuitive control, need an intensive training and suffer from a long inference time.
	Yet, the training of a generative model remains challenging due to the unstable gradients produced by signal-based audio synthesis methods. Notably, the success of such a training of a DDSP-inspired generative model is impacted by (i) the signal-based synthesis method, (ii) the control neural architecture, and (iii) the training methodology.
	In [4], a GAN-based synthesizer (StyleWaveGAN, SWG) has shown promising results on percussion synthesis with improved expressivity in control, opening an opportunity for instrument synthesis using DDSP-inspired models.
	 Project summary : During this internship, a study of a DDSP-inspired audio generative model will be performed. After a comprehensive study of DDSP-inspired architectures on piano and drums datasets [6, 7], the students will extend the work proposed in [4] to more complex signal-based synthesizers. In particular, the scalability of controls to achieve a perceptive control method similar to [5] will be studied. The internship will result in the implementation of the resulting synthesizer as a virtual instrument on a Digital Audio Workstation (DAW) or on an embedded system.
	Candidate profile : She/he should be enrolled in a M2 or engineer diploma in one or more of the following fields: signal and image processing, computer science, embedded systems. The candidate should have strong programming skills as well as good writing and oral communication skills. A strong interest and/or experience with audio signal processing will be appreciated.
	Environment The position can be started anytime from February 2025, and the duration is up to 6 months. The candidate will be based in Annecy. This internship will be hosted in the LISTIC laboratory, with regular meetings and exchanges with researchers from the project.
	Application procedure Send a detailed CV and motivation letter to antoine.lavault@univ-smb.fr and yassine.mhiri@univ-smb.fr
	References [1] Serra, Xavier. "Musical Sound Modeling with Sinusoids plus Noise." (1997). [2] Chowning, John. "The Synthesis of Complex Audio Spectra by Means of Frequency Modulation." <i>Journal of The</i> <i>Audio Engineering Society</i> 21 (1973): 526-534.
	 [3] Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, Adam Roberts. "DDSP: Differentiable Digital Signal Processing." <i>International Conference on Learning Representations</i>. 2020. [4] Antoine Lavault. Generative Adversarial Networks for Synthesis and Control of Drum Sounds, Sorbonne Université, 2023.
	[5] Antoine Lavault, Axel Roebel, Matthieu Voiry. STYLEWAVEGAN: STYLE-BASED SYNTHESIS OF DRUM SOUNDS WITH EXTENSIVE CONTROLS USING GENERATIVE ADVERSARIAL NETWORKS. 19th Sound and Music Computing Conference, 2022

	 [6] Gillet, Olivier and Gaël Richard. "ENST-Drums: an extensive audio-visual database for drum signals processing." International Society for Music Information Retrieval Conference (2006). [7]Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck. "Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset.", International Conference on Learning Representations, 2019. [8]Renault, Lenny et al. "DDSP-Piano: A Neural Sound Synthesizer Informed by Instrument Knowledge." Journal of the Audio Engineering Society (2023): n. pag.
	Deep Learning and associated frameworks (TF or Torch), basic signal processing. Skills in signal-based audio synthesis methods is appreciated.
Gratification	Selon législation en vigueur
	Antoine Lavault – <u>antoine.lavault@univ-smb.fr</u> Yassine Mhiri – yassine.mhiri@univ-smb.fr