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The aim of this paper is to introduce and investigate α∗-uniformity on a non-
empty set X using α∗-covers of X in L-fuzzy set theory. Equivalent conditions
for α∗-uniformity and basis to α∗-uniformity, respectively, are obtained. The
topology generated by α∗-uniformity, called α∗-topology, is also given. Various
examples of α∗-uniformity on X are given and the α∗-topology induced by
them are also seen. It is shown that the family of all α∗ -uniformities on a
non-empty set X forms a complete lattice.

1. Introduction

Various topological structures on a non-empty set, such as topology, unifor-
mity, proximity, merotopy, contiguity and generalizations and variations of these
concepts have been created to handle problems of “topological” nature. General-
izations of proximity, merotopy and contiguity in the L-fuzzy theory can be seen
in [6, 7, 8, 12, 13].

The notion of uniform spaces was introduced by Weil in 1937 in [15] as a
generalization of a metric space. The approach of Weil is called the “entourage”
or “surrounding” approach (see [16]). In 1940, Tukey [14] introduced another
approach to uniformity through uniform coverings (see also [4]).

The entourage approach and pseudo-metric approach have been generalized
to fuzzy situation by Hutton [3], Lowen [10], Höhle [2], Katsaras [5], Liang [9], etc.
Covering approach to uniformity in fuzzy theory has been given by Chandrika
and Meenakshi [1] using Chang’s definition of fuzzy covers. Covering approach
to uniformity on L, where L is a frame (complete lattice satisfying first infinitely
distributive law) has also been done (see [11]).

In the present paper, we characterize uniformity in L-fuzzy theory via α∗-
covers of a non-empty set X, where L is a completely distributive complete lattice
with order reversing involution. In Section 2, some basic definitions and results
that are used throughout this paper are collected. In Section 3, the notions
of α∗-uniformity, separated α∗-uniformity and basis for α∗-uniformity on X are
introduced. An equivalent condition for a family of α∗-covers of X to be a basis
for some α∗-uniformity on X is obtained. It is shown that a family U of α∗-covers
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of X is an α∗-uniformity on X if and only if, U is a filter on X. In Section 4, α∗-
topology has been obtained from α∗-uniformity when α is a

∨
-prime element of L.

It has been shown that a separated α∗-uniformity on X induces an α-T2 L-fuzzy
topology on X. Various examples of α∗- uniformity on X and the α∗-topology
induced by them are given. It is shown that when α is a

∨
-prime element of

L, α∗-uniformities on X lies between L-fuzzy p.q. metrics and α∗-topologies.
For α = 1, it is shown that an α∗- topology induced by an α∗-uniformity is
different from that of [1]. Lattice structure of a family of α∗-uniformities has
been discussed; the supremum and infimum of a family of α∗-uniformities have
been given.

2. Preliminaries and Basic Results

Let X be a non-empty ordinary set and L be a completely distributive com-
plete lattice with order reversing involution (′ : L → L), largest element 1 and
smallest element 0. For definitions of an L-fuzzy set, L-fuzzy point, the relation
≤ and induced L-fuzzy mapping T→ : LX → LY see [17]. For α ∈ L, A ⊂ LX

is called an α∗-cover of X if and only if, for all x ∈ X, there exists f ∈ A such
that α ≤ f(x). For A, B subsets of LX , we say A ∧ B = {f ∧ g : f ∈ A, g ∈ B};
A refines B (A ≺ B) if and only if, for all f ∈ A there exists g ∈ B such that
f ≤ g. A mapping ρ : LX ×LX → [0,∞] is an L-fuzzy psuedo-quasi (p.q.) metric
on X if and only if, it satisfy the following conditions:

(1) if f 6= 0, then ρ(0, f) = ∞, ρ(f, 0) = ρ(f, f) = 0;

(2) ρ(f, g) ≤ ρ(f, h) + ρ(h, g);

(3)(i) if f ≤ g, then ρ(f, h) ≥ ρ(g, h);

(ii) ρ(f,
∨

i∈ I gi) =
∨

i∈ I ρ(f, gi), where I is an arbitrary index set;

(4) if ρ(fi, g) < r =⇒ g ≤ h, for all g ∈ LX and for all i ∈ I, then the

following holds for every k ∈ LX : ρ(
∨

i∈ I fi, k) < r =⇒ k ≤ h.

Let ρ be an L-fuzzy p.q. metric on X. Define mapping Nr : LX → LX , for all r ∈
R (the set of real numbers), r > 0 as follows: for every f ∈ LX , Nr(f) =

∨
{g ∈

LX : ρ(f, g) < r}. Call Dρ∗ = {Nr : r > 0} the associated neighborhood mappings
of ρ. For any t ∈ L, the mapping which sends each x ∈ X to t is denoted by t.
Let i : LX → LX be a mapping such that i(1) = 1; i(f) ≤ f ; i(f ∧g) = i(f)∧i(g).
Then i induces an L-fuzzy topology δ on X defined as δ = {f ∈ LX : i(f) = f}.
Further, if i(i(f)) = i(f), then i is an L-fuzzy interior operator on X. An L-filter
on X is a non-empty subset F of LX satisfying: 0 6∈ F ; if f ∈ F and f ≤ g, then
g ∈ F ; if f ∈ F and g ∈ F , then f ∧ g ∈ F (see [17]).

A non-zero element α ∈ L is called
∨

-prime (∨-prime) if, for (finite) M⊂ L,
α ≤

∨
M =⇒ there exists m ∈ M such that α ≤ m. Note that each singleton

in (P(X),⊂) is
∨

-prime and each atom of a lattice is
∨

-prime.
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3. α∗-Uniformities

Throughout this paper, we take X a non-empty ordinary set and L a com-
pletely distributive complete lattice with order reversing involution (′ : L → L),
largest element 1 and smallest element 0; also I denotes an arbitrary index set
and α is a non-zero element of L.

Definition 3.1. Define a relation ≤α on LX × LX as follows:

f ≤α g if and only if, for every x ∈ X, if xα ∈ f , then xα ∈ g.

The following observations are obvious:

(i) If f ≤ g, then f ≤α g.

(ii) The relation ≤α is reflexive, transitive but not antisymmetric. For ex-
ample, let L = X = I ≡ [0, 1], A ≡ [0, 1

2
]. Define f, g ∈ II as follows:

for x ∈ X,

f(x) =


1
2
, if x ∈ A,

1
12

, otherwise

and

g(x) =


1
2
, if x ∈ A,

2
15

, otherwise.

Let α = 1
3
. Then f ≤α g and g ≤α f , but f 6= g.

(iii) If fi ≤α gi, for every i ∈ I, then
∧

i∈ I fi ≤α

∧
i∈ I gi. Also if α is

∨
-

prime, then
∨

i∈ I fi ≤α

∨
i∈ I gi. Note that if I is finite and α is ∨-prime, then

∨i∈ Ifi ≤α ∨i∈ I gi.

Definition 3.2. Let A,B be subsets of LX . We say that A α∗-refines B,
denoted by A ≺α B, if and only if, for all f ∈ A, there exists g ∈ B such that
f ≤α g.

The following observations are obvious:

(i) If A ≺ B, then A ≺α B.

(ii) The relation ≺α is reflexive, transitive but not antisymmetric. For ex-
ample, A ∧A ≺α A ≺α A ∧A but A 6= A ∧A, in general, if |A| ≥ 2.

(iii) If C is an α∗-cover of X and C ≺α E , then E is also an α∗-cover of X.

Definition 3.3. If C is an α∗-cover of X, we define

st(xα, C) =
∨
{f ∈ C : xα ∈ f},

st(f, C) = f ∨ (
∨
{st(xα, C) : xα ∈ f}),

C∗ = {st(xα, C) : x ∈ X}, and

St(C) = {st(f, C) : f ∈ C}
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Clearly, for any α∗-covers C and E of X, C ≺α C∗; C ≺α St(C); if C ≺α E ,
then C∗ ≺α E∗, St(C) ≺α St(C) and (C ∧ E)∗ ≺α C∗ ∧ E∗. Also, st(f, C ∧ E) =
st(f, C) ∧ st(f, E), for any f ∈ LX .

Definition 3.4. An α∗-uniformity on X is a non-empty collection U of α∗-
covers of X satisfying the following conditions:

(FU1) if C ∈ U and E ∈ U , then C ∧ E ∈ U ;

(FU2) if C ∈ U and C ≺α E, then E ∈ U ;

(FU3) for every C ∈ U , there exists E ∈ U such that E∗ ≺∗α C.
We call (X,U) an α∗-uniform space. Further, U is a separated α∗-uniformity on
X if and only if, it also satisfies the following condition:

(FU4) for every x, y ∈ X, there is an α∗-covering C ∈ U such that every
element of C does not simultaneously contain xα and yα.

We call (X,U) a separated α∗-uniform space. Note that if α is a
∨

-prime element
of L, then E∗ in (FU3) can be interchanged with St(E).

Definition 3.5. A family B of α∗-covers of X is a basis for an α∗-uniformity
on X if and only if, B ⊂ U and each C ∈ U is α∗-refined by some α∗-cover E ∈ B.

Let B be a family of α∗-covers of X satisfying (FU1) and (FU3). Then is
U = {C : C1 ≺α C, for some C1 ∈ B} an α∗-uniformity on X.

Definition 3.6. Define a relation ≺∗α as follows:

C ≺∗α E if and only if, C∗ ≺α E, for any α∗-covers C and E .

Proposition 3.1. Let B be a family of α∗-covers of X. Then B is basis for
some α∗-uniformity on X if and only if, the following condition is satisfied:

(FB) if C1 ∈ B and C2 ∈ B, then there exists C3 ∈ B such that C3 ≺∗α C1 ∧ C2.

Proof. Let B be basis for some α∗-uniformity U on X. The proof follows
by noting that for α∗-covers C1, C2, C3 and C4, if C1 ≺α C2 and C3 ≺α C4, then
C1 ∧ C3 ≺α C2 ∧ C4 and C∗1 ≺α C∗2 ; also (C3 ∧ C4)

∗ ≺α C∗3 ∧ C∗4 . Converse follows
by noting that if B satisfies (FB), then U = {C : C1 ≺α C, for some C1 ∈ B} is an
α∗-uniformity on X.

Lemma 3.1. Let B be a basis for some α∗-uniformity U on X. Then U =
{C : C1 ≺α C, for some C1 ∈ B} = {C : C1 ≺∗α C, for some C1 ∈ B}.

Proof. It is straightforward.

Lemma 3.2. A family U of α∗-covers of X is an α∗-uniformity on X if and
only if, (U , ≺∗α) is a filter on X.

Proof. It follows by Lemma 3.1.
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Theorem 3.1. Every separated α∗-uniform structure U on X induces a sepa-
rated uniform structure U∗α(U) on X, where, U∗α(U) = {U∗α(A) : A ∈ U} and U∗α(A) =
{{x ∈ X : f(x) ≥ α} : f ∈ A}. Conversely, given a separated uniform space
(X, µ), there is a separated α∗-uniform space (X, ω∗α(µ)).

Proof. Let U be an α∗-uniformity on X. Clearly, U∗α(A) is a cover of X,
for every A ∈ U . To show that U∗α(U) is an uniformity on X, it is sufficient to
show that (U∗α(U),≺∗) is a filter on P(X). Obviously, ∅ /∈ U∗α(U) as ∅ /∈ U . Let
U∗α(A), U∗α(B) ∈ U∗α(U), where A,B ∈ U . Now, U∗α(A)∧U∗α(B) = U∗α(A∧B). Since
A ∧ B ∈ U , therefore U∗α(A) ∧ U∗α(B) ∈ U∗α(U).

Finally, let U∗α(A) ≺∗ E and U∗α(A) ∈ U∗α(U). That is, (U∗α(A))∗ ≺ E . Clearly,
E is a cover of X. Let E ∈ E . Define fE : X → L as follows:

for x ∈ X,

fE(x) =

{
α, if x ∈ E,
0, otherwise.

(Note that the map fE is not uniquely defined). Then E = {{x ∈ X : fE(x) ≥
α} : fE ∈ B}, where B = {fE : E ∈ E}. Since U∗α(A) ≺ E , therefore for
all C ∈ U∗α(A), there exists E ∈ E such that C ⊂ E. Thus, if f ∈ A and
α ≤ f(x), then α ≤ fE(x), for some fE ∈ B and for all x ∈ X. Consequently,
for all x ∈ X, if xα ∈ f , then xα ∈ fE. Therefore, for all f ∈ A, there exists
fE ∈ B such that f ≤α fE. Thus, A ≺α B. Since A ∈ U , therefore B ∈ U , which
gives E = U∗α(B) ∈ U∗α(U). Further, if U is a separated α∗-uniformity on X and
x, y ∈ X, then there exists U∗α(A) ∈ U∗α(U) such that each element of U∗α(A) does
not simultaneously contain x and y.

Conversely, let (X,µ) be a uniform space. Define

ω∗α(µ) = {ω∗α(A) : A ∈ µ},
ω∗α(A) = {fA : A ∈ A},

where for xi ∈ X (i ∈ I),

fA(xi) =

{
βi ≥ α, if xi ∈ A,
γi � α, otherwise,

(βi, γi ∈ L). Since A is a cover of X, therefore ω∗α(A) is an α∗-cover of X, clearly,
for all A ∈ µ. Then by Lemma 3.2, it is sufficient to show that (ω∗α(U),≺∗α) is a
filter on X. Clearly, ∅ /∈ ω∗α(µ). Let ω∗α(A) ∈ ω∗α(µ) and ω∗α(B) ∈ ω∗α(µ). Then
ω∗α(A) ∧ ω∗α(B) = {fA ∧ fB : fA ∈ ω∗α(A) and fB ∈ ω∗α(B)} = {fA

T
B : fA

T
B ∈

ω∗α(A ∧ B)}. Since A ∧ B ∈ µ, therefore ω∗α(A ∧ B) ∈ ω∗α(µ).

Finally, let ω∗α(A) ∈ ω∗α(µ) and ω∗α(A) ≺∗α B. Then ω∗α(A) ≺α B. Thus, B is
an α∗-cover of X. Let C = {{x ∈ X : g(x) ≥ α} : g ∈ B}. Since ω∗α(A) ≺α B,
therefore A ≺ C. For g ∈ B, denote Cg = {x ∈ X : g(x) ≥ α}. Define fCg = g,
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for all g ∈ B. Thus, B = ω∗α(C). Since C ∈ µ, we get B ∈ ω∗α(µ). Further, if µ is
separated, then ω∗α(µ) is separated, clearly.

4. α∗-Uniform Topologies and Order Structure of α∗-Uniformities

In this section, we obtain the L-fuzzy topology induced by an α∗-uniformity
on X when either α is a

∨
-prime element of L or α = 1. When α = 1, it is

shown that the L-fuzzy topology given by an α∗-uniformity on X in our sense is
different from that in the sense of [1].

Definition 4.1. Let α be a
∨

-prime element of L and U be an α∗-uniformity
on X. Then f ∈ LX is a neighborhood of xα ∈ f if and only if, for some α∗-
covering C ∈ U , st(xα, C) ≤α f.

Theorem 4.1. Let α be a
∨

-prime element of L and U be an α∗-uniformity
on X. Then τ = {f ∈ LX : f is neighborhood of all xα ∈ f} is an L-fuzzy
topology on X.

Proof. Clearly, 0 ∈ τ and 1 ∈ τ . If xα /∈ f ∧ g for every x ∈ X, then
f ∧ g ∈ τ , vacuously. If xα ∈ f ∧ g, then xα ∈ f and xα ∈ g. Therefore,
there exist C ∈ U and E ∈ U such that st(xα, C) ≤α f and st(xα, E) ≤α g. Thus,
st(xα, C)∧st(xα, E) ≤α f∧g. Consequently, st(xα, C∧E) ≤ f∧g. Since C∧E ∈ U ,
therefore f ∧ g ∈ τ.

Finally, let {fi ∈ τ : i ∈ I} and xα ∈
∨

i∈ I fi. Then there exists i1 ∈ I such
that xα ∈ fi1 . Since fi1 ∈ τ , therefore there exists C ∈ U such that st(xα, C) ≤
fi1 ≤

∨
i∈ I fi. Thus,

∨
i∈ I fi ∈ τ .

Definition 4.2. The above L-fuzzy topology induced by an α∗-uniformity is
called α∗- uniform topology on X, or α∗-topology on X simply. Further, an L-
fuzzy topological space is called α-T2 if and only if, for all x, y ∈ X there exists a
neighborhood f of xα and g of yα such that f ∧ g = 0.

Observe that, if U is a separated α∗-uniformity, then τ is an α-T2 L-fuzzy
topological space.

Proposition 4.1. Let α be a
∨

-prime element of L. If τ is an α∗-topology
induced by an α∗-uniformity U on X, then τ ∗α(τ) = {{x ∈ X : f(x) ≥ α} : f ∈ τ}
is the topology induced by the uniformity U∗α(U) on X. Conversely, if τ is a
induced by an uniformity U on X, then ω∗α(τ) = {χA : A ∈ τ} is the α∗-topology
induced by the α∗-uniformity ω∗α(U) on X.

Proof. It follows by noting that for any α∗-cover C of X st(x, U∗α(C)) = {y ∈
X : st(xα, C)(y) ≥ α} and for any cover C of X, st(xα, ω∗α(C)) ≤α fst(x, C) where
the map fst(x, C) is defined in the similar manner as the map fA in Theorem 3.1.
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Proposition 4.2. Let α = 1. Define i : LX → LX such that i(f) =
∨
{x1 ∈

LX : there exists C ∈ U satisfying st(x1, C) ≤1 f}, for every f ∈ LX . Then i
induces an L-fuzzy topology on X.

Proof. It follows by noting that i(1) = 1; i(f) ≤ f and i(f ∧g) = i(f)∧ i(g).

Further, note that for any constant function t ∈ LX such that t 6= textbf1,
i(t) = 0 in our sense but i(t) = t in the sense of [1]. Therefore, our L-fuzzy
topology is different from that of [1].

Definition 4.3. Let UX and UY be α∗-uniformities on X and Y , respectively.
An L-fuzzy mapping T→ : (X,UX) → (Y,UY ) is called α∗-continuous if, f is
neighborhood of xα ∈ LY =⇒ T←(f) is neighborhood of T←(xα) ∈ LX . Further,
T→ is called α∗-uniformly continuous if, C ∈ UY =⇒ T←(C) ∈ UX .

Proposition 4.3. Every α∗-uniformly continuous one-one map T→ : (X,
UX) → (Y, UY ) is α∗- continuous.

Proof. Let g be a neighborhood of T→(xα) = [ T (x)]α ∈ LY . Then there exists
C ∈ UY such that st(T→(xα), C) ≤ g. Since T←(st(T→(xα), C)) = st(xα, T←(C)),
therefore st(xα, T←(C)) ≤ T←(g). Since T is α∗-uniformly continuous and C ∈ UY ,
therefore T←(C) ∈ UX . Thus, T←(g) is a neighborhood of xα ∈ LX . Hence, T→

is α∗-continuous.

Examples

(1) The family D = {C ⊂ LX : C is an α∗-cover of X} is a separated α∗-
uniformity called the uniformly discrete α∗-uniformity on X. It follows
by noting that for the α∗-cover E = {xα : x ∈ X} of X, E = E∗ and
E ≺∗α C, for every α∗-cover C of X. Further, if α is a

∨
-prime element

of L, then the α∗-uniform topology induced by D is the discrete L-fuzzy
topology on X.

(2) The family I = {C ⊂ LX : {1} ≺α C} is an α∗-uniformity on X, called the
indiscrete α∗-uniformity on X. It follows by noting that st(xα, {1}) = 1,
for all x ∈ X and consequently, {1} is the base for the α∗-uniformity I.
Further, if α is a

∨
-prime element of L, then the α∗-uniform topology

induced by I, called the indiscrete α∗-uniform topology on X, is τ(I) =
{1}

⋃
{f ∈ LX : xα /∈ f, for all x ∈ X}.

(3) Let L be a boolean algebra, α be a ∨-prime element of L and F be an
L-filter on X. Then the L-filter α∗-uniformity UF on X has all α∗-covers
{f} ∨ {xα : xα ∈ f c} (where f ∈ F and f c is the complement of f in LX ,
that is, f ∧ f c = 0 and f ∨ f c = 1 [see 17]) as a basis.

(4) Let α be a
∨

-prime element of L, then the family B = {{Nr(xα) : x ∈
X} : r > 0} is a base for an L-fuzzy p.q. metric α∗-uniformity Uρ on
X, where the α∗-topology τρ on X induced by L-fuzzy p.q. metric is
defined as follows: f ∈ τρ if and only if, for every xα ∈ f , there exists
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r > 0 such that Nr(xα) ≤ f. Thus, when α is a
∨

-prime element of L, an
α∗-uniformity lies between an L-fuzzy p.q. metric and an α∗-topology on
X.

(5) Let (X, i) be an L-fuzzy topological space generated by the an L-fuzzy
interior operator i on X. Then U = {C ⊂ LX : C is an α∗-cover and∨

f∈C i(f) ≥ xα, for every x ∈ X} is an α∗-uniformity on X. Further, if α

is a
∨

-prime element of L, then U = {C ⊂ LX :
∨

f∈C i(f) ≥ xα, for every

x ∈ X} is an α∗-uniformity on X.

Definition 4.4. Let U1 and U 2 be two α∗-uniformities on X. We say that
U1 is finer than U 2, and write U1 < U 2, if and only if, U1 ⊂ U 2.

Theorem 4.2. The family of all α∗-uniformities on X forms a complete
lattice with respect to the order < . The zero of this lattice (i.e. the least element)
is the indiscrete α∗ -uniformity I while the unit (i.e. the largest element) is the
uniformly discrete α∗-uniformity D on X. Further, if α is

∨
-prime element of L,

then τ(
∨

i∈ I U i) =
∨

i∈ I τ(U i).

Proof. Clearly, the uniformly discrete α∗-uniformity D on X and the indis-
crete α∗-uniformity I on X are the unit and the zero of the poset {Ui : Ui is an
α∗-uniformity on X, i ∈ I. Suppose {Ui : i ∈ I} be an arbitrary family of α∗-
uniformities on X. Then

⋂
{Ui : i ∈ I} is the greatest lower bound of this family,

clearly. Let B consists of all finite meets of elements of
⋃
{Ui : i ∈ I} and C ∈ B.

Without loss of generality, we can assume that C = Ci1 ∧ Ci2 such that Ci1 ∈ Ui1

and Ci2 ∈ Ui2 , i1, i2 ∈ I. Therefore, there exists Ei1 ∈ Ui1 and Ei2 ∈ Ui2 such
that E∗i1 ≺α Ci1 and E∗i2 ≺α Ci2 . Consequently, E∗i1 ∧E

∗
i2
≺α Ci1∧Ci2 = C. Hence,

(Ei1 ∧ Ei2)
∗ ≺α C. Clearly, Ei1 ∧ Ei2 ∈ B being finite meet of elements of

⋃
i∈ I Ui.

Thus, B is a basis for an α∗-uniformity on X. Let U be the α∗-uniformity gen-
erated by the basis B. Then, by construction, U is an upper bound of the family
{Ui : i ∈ I}. But any upper bound of this family would have to contain all finite
meets of elements of

⋃
i∈ I U i. So, U =

∨
i∈ I U i.

Conclusion. Notice that we get an α∗-topology on X only when α is a∨
-prime element of L and I ≡ [0, 1] does not has any

∨
-prime element. Thus,

the present theory is a unified study of the classical theory, the popular fuzzy
theory and the generalized L-fuzzy theory (except the study which involves α∗-
topology). Various concepts can be studied using α∗-uniformity on X in L-fuzzy
set theory, some of which will appear in our forthcoming papers.
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