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The aim of the present paper is to establish interrelationship among continuity
conditions for a nonnegative extended real-valued function µ defined on an
effect algebra. Examples and counterexamples are given to illustrate various
situations arising in this study.

1. Introduction

In 1992, Kôpka defined the D-posets of fuzzy sets in [17], which is closed un-
der the formations of differences of fuzzy sets, while studying the axiomatical
systems of fuzzy sets. The structure of a D-poset supports a noncommutative
measure theory and allows the solution of some problems of noncommutative
probability theory, including some problems of theory of quantum measurement.
In the ”quantum probability theory” one assume the occurrence of noncompati-
ble events, that is, events that can be tested separately but not simultaneously.
Thus the set of noncompatible events does not fulfil the axioms of Boolean alge-
bra. Therefore Boolean algebra is replaced by orthomodular lattice or poset [13].
The concept of an effect algebra (which is a common generalization of orthomod-
ular lattices and MV -algebras) has been introduced by Foulis and Bennet [4] as
an algebraic structure providing an instrument for studying quantum effects that
may be unsharp. For a list of nice examples of effect algebras we refer to [6]
and for some of its properties we refer also to [4] and [5]. Effect algebras, which
are essentially equivalent to D-posets, were introduced as the carriers of states
or probability measure in the Quantum Physics [7], in Mathematical Econom-
ics ([10], [11]) and in Fuzzy Theory ([8], [12], [14-16], [19-21]). The categorical
equivalence of D-posets and effect algebras is discussed in [9]. Nonadditive mea-
sures appear today in many branches of pure mathematics with many important
applications ([18], see also [22]).

Avallone [3] gave the concept of upper continuous (also called continuous from
below) and lower continuous (also called continuous from above) functions de-
fined on a D-lattice in the context of subadditive measures. In the present paper,
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notions of weakly null-additive function, null-additive function and different types
of continuities of a function defined on an effect algebra E are introduced and in-
terrelationship among these conditions are studied. Prerequisites and some basic
results on effect algebras are collected in Section 2, which have been extensively
used in the subsequent sections. In Section 3, we introduced nonadditive measure
µ defined on an effect algebra E, with values in [0,∞]. It is shown that being
a weakly null-additive function, is a weaker condition than null-additivity. We
have proved for a function µ defined on a σ-complete effect algebra E that (i) if
µ (with µ(0) = 0) is strongly order continuous, then µ is order continuous (ii) if
µ is monotone and order continuous, then µ is exhaustive (a characterization of
exhaustivity in terms of a µ-Cauchy sequences is established and used to prove
converse of this statement); converse of both of these statements need not be
true, which has been established through counterexamples. We have proved that
every null-additive and order continuous function is null-continuous and also ev-
ery weakly null-additive, strongly order continuous function is null-continuous;
two different techniques are used to obtain a suitable decreasing sequence from
a given increasing sequence while proving these results. Here also converse of
both of these statements need not be true, moreover converses in each case is
established by adding suitable necessary conditions.

2. Preliminaries and Basic Results

Throughout the paper, E = (E;⊕, 0, 1) denotes, in general, an Effect algebra
(see [1-6, 9]). In every effect algebra E, a dual operation 	 to ⊕ can be defined
as follows: a 	 c exists and equals b if and only if b ⊕ c exists and equals a. We
say that two elements a, b ∈ E are orthogonal and we write a ⊥ b, if a⊕ b exists.
If a ⊕ b = 1, then b is orthocomplement of a and write b = a⊥. It is clear that
1⊥ = 0, (a⊥)⊥ = a, a ⊥ 0 and a⊕ 0 = a, for all a ∈ E. Also for a, b ∈ E, define
a ≤ b if there exists c ∈ E such that a ⊥ c and a⊕c = b. It may be proved that ≤
is a partial ordering on E and 0 ≤ a ≤ 1; a ≤ b ⇔ b⊥ ≤ a⊥ and a ≤ b⊥ ⇔ a ⊥ b
for a, b ∈ E. If a ≤ b, the element c ∈ E such that c ⊥ a and a⊕ c = b is unique,
and satisfies the condition c = (a ⊕ b⊥)⊥. In this case we write c = b 	 a. If
(E, 6) is a lattice, we say that the effect algebra E is a lattice effect algebra, or a
D-lattice. For elements a, b of a D-lattice, we set a∆b = (a ∨ b)	 (a ∧ b) [3].

For a1, . . . , an ∈ E, we inductively define a1 ⊕ . . . ⊕ an = (a1 ⊕ . . . ⊕ an−1) ⊕
an, provided that the right hand side exists. The definition is independent on
permutation of the elements. A finite subset {a1, . . . , an} of E is said to be
orthogonal if a1 ⊕ . . . ⊕ an exists. A sequence {an} in E is called orthogonal if,
for every n,

⊕
i6n ai exists. If, moreover supn

⊕
i6n ai exists, the sum

⊕
n∈N an of

an orthogonal sequence {an} in E is defined as supn

⊕
i6n ai; N denotes the set

of all natural numbers. An effect algebra E is called a σ-complete effect algebra
if every orthogonal sequence in E has its sum [1, 2, 9].
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Let us recall the following results which we shall use in the sequel.
2.1 [2]. Let E be a lattice effect algebra (or D-lattice). We write an ↑ a

(respectively, an ↓ a) whenever {an} is an increasing sequence in E and a =
supn an (respectively, {an} is an decreasing sequence in E and a = infn an).

2.2 [1]. Let a, b, c ∈ E such that a ⊥ b and b ≤ c. Then a ⊕ b ≤ c if and only
if a ≤ c	 b.

2.3 [1]. (i) Let {a1, ..., an} ⊆ E be orthogonal. If 1 ≤ k ≤ n, then {a1, ..., ak}
and {ak+1, ..., an} are orthogonal and

⊕n
i=1 ai =

⊕k
i=1 ai ⊕

⊕n
i=k+1 ai.

(ii) Let {an} be an orthogonal sequence in E and A, B ⊆ N disjoint such that
a =

⊕
n∈A an and b =

⊕
n∈B an exist. Then a ⊥ b and a⊕ b =

⊕
n∈A∪B an.

(iii) Let {an} be an orthogonal sequence in E and A, B ⊆ N be such that
B ⊆ A and there exist a =

⊕
n∈A an and b =

⊕
n∈B an. Then

⊕
n∈A\B an exists

and we have
⊕

n∈A\B an = a	 b.

2.4 [2]. (i) Let {a0, a1, . . . an} be in E with a0 ≤ a1 ≤ . . . ≤ an and let
bi = ai 	 ai−1 for every i ∈ {1, 2, . . . , n}. Then {b1, b2, . . . bn} is orthogonal and
b1 ⊕ b2 ⊕ . . .⊕ bn = an 	 a0.

(ii) Let E be a σ-complete effect algebra. If {an} is an increasing (respectively,
decreasing) sequence, then supn an (respectively, infn an) exists.

2.5. ([2], [9]) Assume that a, b, c are elements of an effect algebra E.
(i) If a 6 b, then b = a⊕ (b	 a).
(ii) If a 6 b, then b	 a 6 b and b	 (b	 a) = a.
(iii) If a ⊥ b, then a ≤ a⊕ b and (a⊕ b)	 a = b.
(iv) If b 6 c and a ≤ c	 b, then b ≤ c	 a and (c	 b)	 a = (c	 a)	 b.
(v) If a 6 c and b 6 c, then c	 a = c	 b if and only if a = b.
(vi) If a 6 b 6 c, then (c	 b)⊕ a exists and (c	 b)⊕ a = c	 (b	 a).
(vii)If a ⊥ b and a⊕ b ≤ c, then c	 (a⊕ b) = (c	 a)	 b = (c	 b)	 a.
(viii) If a 6 b 6 c, then (c	 b) 6 (c	 a) and (c	 a)	 (c	 b) = (b	 a).
(x) If a 6 b 6 c, then (b	 a) 6 (c	 a) and (c	 a)	 (b	 a) = (c	 b).
2.6. ([3], [9]) Assume that a, b, bn (n ∈ N) are elements of a D-lattice E.
(i) If bn ↓ b and a ⊥ bn for each n, then a⊕ bn ↓ a⊕ b.
(ii) If bn ↓ b and a ≥ bn for each n, then a	 bn ↑ a	 b.

(iii) If bn ↓ b and a ≤ bn for each n, then bn 	 a ↓ b	 a.

(iv) If bn ↑ b and a ≥ bn for each n, then a	 bn ↓ a	 b.

3. Interrelationship Among Continuity Conditions

Let E be an effect algebra and µ be a [0,∞]-valued function defined on E.

Definition 3.1. µ is called a nonadditive function if it satisfies the following
conditions:

(i) µ(0) = 0; (ii) (monotone) if a, b ∈ E, a ≤ b, then µ(a) ≤ µ(b).
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Definition 3.2. A function µ is called weakly null-additive, if µ(b ⊕ c) = 0
provided b, c ∈ E, b ⊥ c and µ(b) = µ(c) = 0.

Definition 3.3. A function µ is called null-additive, if µ(b⊕ c) = µ(b) provided
b, c ∈ E, b ⊥ c and µ(c) = 0.

Observe that, µ is null-additive if and only if µ(b 	 c) = µ(b) provided b, c ∈ E,
c ≤ b and µ(c) = 0. Also, if a function µ is null-additive, then it is weakly null-
additive, but the following example shows that converse need not be true.

Example 3.1. Let E1 = {0, a, b, c, d, e, 1}. Let us define: a ⊕ b = b ⊕ a = c,
b⊕ c = c⊕ b = a⊕ d = d⊕ a = e⊕ e = 1 and let x⊕ 0 = 0⊕ x for all x ∈ E1.
Then E1 is an effect algebra. Define a function µ1 on E1 as follows: µ1(x) = 1
if x ∈ {a, e}, and µ1(x) = 0 if x ∈ {0, b, c, d, 1}. Then µ1 is weakly null-additive
but not null-additive.

Example 3.2. Let E2 = {0, a, b, c, 1}. Let us define: a ⊕ b = b ⊕ a = c,
b ⊕ c = c ⊕ b = a ⊕ a = 1 and let x ⊕ 0 = 0 ⊕ x for all x ∈ E2. Then E2 is an
effect algebra. Define a function µ2 on E2 as follows: µ2(x) = 1 if x ∈ {c, 1}, and
µ2(x) = 0 if x ∈ {0, a, b}. Then µ2 is not weakly null-additive (and so µ2 is not
null-additive). Further, define a function µ3 on E3 by, µ3(x) = 1 if x ∈ {a, c, 1},
and µ3(x) = 0 if x ∈ {0, b}. Then µ3 is null-additive.

Definition 3.4. For a function µ, we say that µ is
(i) continuous from below, if an ↑ a, an ∈ E (n ∈ N), a ∈ E, then limn→∞ µ(an) =

µ(a),
(ii) continuous from above, if an ↓ a, an ∈ E (n ∈ N), a ∈ E, then limn→∞ µ(an) =

µ(a),
The function µ is called continuous if it is both continuous from below and

continuous from above,
(iii) order continuous, if an ↓ 0, an ∈ E (n ∈ N), then limn→∞ µ(an) = 0,
(iv) strongly order continuous, if {an} is a decreasing sequence in E and

µ(
∧∞

n=1 an) = 0 (provided
∧∞

n=1 an exists), then limn→∞ µ(an) = 0,
(v) null-continuous, if {an} is an increasing sequence in E and µ(an) = 0

(n ∈ N), then µ(
∨∞

n=1 an) = 0, (provided
∨∞

n=1 an exists),
(vi) exhaustive, if {an} is an orthogonal sequence in E, then limn→∞ µ(an) = 0,
(vii) A function µ is called autocontinuous from below, if limn→∞ µ(cn) = 0

implies limn→∞ µ(b 	 cn) = µ(b) whenever b ∈ E, {cn} is a sequence in E, and
cn ≤ b (n ∈ N),

(vii) A function µ is called autocontinuous from above, if limn→∞ µ(cn) = 0
implies limn→∞ µ(b⊕ cn) = µ(b) whenever b ∈ E, {cn} is a sequence in E, b ⊥ cn

(n ∈ N),
The function µ is called autocontinuous if it is both autocontinuous from below

and autocontinuous from above.
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Observe that if µ is autocontinuous from below or autocontinuous from above,
then it is null-additive.

Example 3.3. Let E3 = {0, 1, 1
2
, 1

3
, ..., 1

p
, ...}. Let us define: for each 1

p
, 0⊕ 1

p
=

1
p
, 1

p
⊕ 1

p
= 1, 0⊕ 1 = 1 and if p 6= q, 1

p
⊕ 1

q
is undefined. Then E3 is a σ-complete

effect algebra. Define functions µ4, µ5 and µ6 on E3 as follows:
(I) µ4(1) = 1, and µ4(x) = 0 if x ∈ {0, 1

2
, 1

3
, ..., 1

p
, ...}.

(II) µ5(x) = 0, for all x ∈ E3.

(III) µ6(0) = 0, and µ6(x) = 1 if x ∈ {1, 1
2
, 1

3
, ..., 1

p
, ...}.

Then we have,
(i) µ4, µ5 and µ6 are continuous from below;
(ii) µ4 and µ5 are continuous from above, but µ6 is not continuous from above;
(iii) µ4 and µ5 are order continuous, but µ6 is not order continuous;
(iv) µ4 and µ5 are strongly order continuous, but µ6 is not strongly order

continuous;
(v) µ4, µ5 and µ6 are null-continuous;
(vi) µ4 and µ5 are exhaustive, but µ6 is not exhaustive;
(vii) µ5 are µ6 are autocontinuous, but µ4 is not autocontinuous;

Proposition 3.1. Let µ be a null-additive and continuous from above function
defined on a σ-complete D-lattice E. If a ∈ E, then limn→∞ µ(a⊕ bn) = µ(a) for
any decreasing sequence {bn} in E for which limn→∞ µ(bn) = 0 and a ⊥ bn

(n ∈ N).

Proof. Let {bn} be a decreasing sequence in E such that limn→∞ µ(bn) = 0
and let a ∈ E with a ⊥ bn (n ∈ N). By 2.4(ii), put b =

∧∞
n=1 bn. Then µ(b) =

limn→∞ µ(bn) = 0. Now, since a ⊥ bn (n ∈ N) and bn ↓ b, so by 2.6(i), we have
a ⊕ bn ↓ a ⊕ b. Hence by the null-additivity of µ, we get limn→∞ µ(a ⊕ bn) =
µ(a⊕ b) = µ(a).

Proposition 3.2. Let µ be a null-additive and continuous function defined
on a σ-complete D-lattice E. If a ∈ E, then limn→∞ µ(a 	 bn) = µ(a) for any
decreasing sequence {bn} in E for which limn→∞ µ(bn) = 0 and bn ≤ a (n ∈ N).

Proof. Let {bn} be a decreasing sequence in E such that limn→∞ µ(bn) = 0 and
let a ∈ E with bn ≤ a, (n ∈ N). Putting b =

∧∞
n=1 bn, we obtain that b ∈ E and

µ(b) = limn→∞ µ(bn) = 0. Again, since bn ↓ b and bn ≤ a, so by 2.6(ii), we get
a 	 bn ↑ a 	 b. Hence by the null-additivity of µ, we obtain limn→∞ µ(a 	 bn) =
µ(a	 b) = µ(a).

Proposition 3.3. Let µ be an order continuous and autocontinuous from above
(respectively, autocontinuous from below) function on a D-lattice E. Then µ is
continuous from above (respectively, continuous from below).
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Proof. Let an ↓ a, an ∈ E (n ∈ N), a ∈ E. By 2.6(iii), we have an	a ↓ 0. Since
µ is order continuous, therefore limn→∞ µ(an 	 a) = 0. Now, since a ≤ an, so by
2.5(i) we obtain an = a⊕(an	a). Hence limn→∞ µ(an) = limn→∞ µ(a⊕(an	a)) =
µ(a), as µ is autocontinuous from above, and the result follows.

Remark 3.1. Converse of the above Proposition 3.3 need not be true, as µ4

is continuous from above but not autocontinuous.

Proposition 3.4. Let µ be function defined on a σ-complete effect algebra E.
(i) If µ is continuous from above, then it is strongly order continuous.
(ii) If µ is strongly order continuous, with µ(0) = 0, then it is order continuous.
(iii) If µ is continuous from below, then it is null-continuous.

Proposition 3.5. Let µ be monotone and order continuous function defined
on a σ-complete effect algebra E. Then µ is exhaustive.

Proof. Let {an} be an orthogonal sequence in E. In view of 2.3(ii), we have⊕∞
i=n ai ↓ 0 as n →∞. By the order continuity of µ, we get limn→∞ µ(

⊕∞
i=n ai) =

0. Since an ≤
⊕∞

i=n ai, so we obtain limn→∞ µ(an) = 0.

Remark 3.2. Converse of Proposition 3.5 need not be true: consider the effect
algebra E1 of Example 3.1. Define a function µ7 on E1 as follows: µ7(x) = 1
if x ∈ {a, b, 1}, and µ7(x) = 0 if x ∈ {0, c, d, e}. Then µ7 is exhaustive but not
monotone.

Theorem 3.1. Let µ be a nonadditive function defined on a σ-complete effect
algebra E. Then µ is exhaustive if and only if µ(an∆am) → 0 as n, m → ∞ for
any monotone sequence {an} in E (which is called µ-Cauchy).

Proof. Let µ be exhaustive. Suppose that {an} is an increasing sequence but
not µ-Cauchy. Then there exists ε > 0 and a subsequence {ank

}∞k=1 of {an} such
that µ(ank+1

	 ank
) = µ(ank+1

∆ ank
) ≥ ε, ∀ n ≥ k. Put bk = ank+1

	 ank
(k ∈ N).

Then by 2.4(i), {bk} is an orthogonal sequence and limk→∞ µ(bk) ≥ ε, which
contradicts that µ is exhaustive. Conversely, if {an} is an orthogonal sequence
in E, then

⊕
n∈N an exists and by 2.3(ii), we have bn =

⊕∞
i=n an ↓ 0 as n → ∞.

Thus {bn} is µ-Cauchy and so we obtain, limn→∞ µ(an) = limn→∞ µ(bn	 bn+1) =
limk→∞ µ(bn∆ bn+1) = 0.

Proposition 3.6. Let µ be a nonadditive, exhaustive and continuous from
below function defined on a σ-complete D-lattice E. Then µ is order continuous.

Proof. Let an ↓ 0, an ∈ E (n ∈ N). For any fixed n ∈ N, using 2.6(ii)
we get an 	 am ↑ an as m → ∞ (as an ≥ am for m ≥ n). Consequently,
limm→∞ µ(an	 am) = µ(an). Now, for a given ε > 0, choose n1, n2 ∈ N such that
µ(an) < µ(an 	 am) + ε

2
, for all m ≥ n1 and µ(an∆am) < ε

2
, for all n, m ≥ n2.

Now, for m ≥ n ≥ n0 (n0 = max{n1, n2}) we obtain, µ(an) < µ(an 	 am) + ε
2

=
µ(an∆am) + ε

2
< ε, showing that limn→∞ µ(an) = 0.
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Aliter. Let us suppose on the contrary. Then there exists an ε0 > 0 and a
sequence {an} with an ↓ 0, and µ(an) > ε0 (n ∈ N). Since (by using 2.6(ii)),
(ak 	 an) ↑ ak for n ≥ k as n → ∞, for any fixed k and µ is continuous from
below, we get limn→∞µ(a1	an) = µ(a1) > ε0. Thus there exists an n(1) such that
µ(a1 	 an(1)) > ε0. In the same way, since limn→∞µ(an(1) 	 an) = µ(an(1)) > ε0,
choose n(2) > n(1) with µ(an(1) 	 an(2)) > ε0. Thus, we obtain a subsequence
{n(k)} of N such that n(1) < n(2) < ... and µ(an(k) 	 an(k+1)) > ε0. Put bk =
a⊥n(k)	a⊥n(k+1) (k ∈ N), using 2.4(i) and 2.5(viii), we obtain an orthogonal sequence

{bk} of elements in L, with µ(bk) > ε0, which contradicts the fact that µ is
exhaustive.

Remark 3.3. Exhaustivity of µ is an essential condition for the above Propo-
sition 3.6. The function µ6 is monotone and continuous from below, but not order
continuous (observe that µ6 is not exhaustive).

Proposition 3.7. Let µ be a null-additive and order continuous function de-
fined on a σ-complete D-lattice E. Then µ is strongly order continuous.

Proof. Let {an} be a decreasing sequence in E and µ(
∧∞

n=1 an) = 0, (
∧∞

n=1 an

exists by 2.4(ii)). Put a =
∧∞

n=1 an. Since an ↓ a, then by 2.6(iii) we have
an 	 a ↓ 0. Now, since a ≤ an (n ∈ N), so an = a ⊕ (an 	 a) and by the
null-additivity and order continuity of µ we obtain

lim
n→∞

µ(an) = lim
n→∞

µ(a⊕ (an 	 a)) = lim
n→∞

µ(an 	 a) = 0.

Remark 3.4. Converse of the above Proposition 3.7 need not be true, as µ4

is strongly order continuous but not null-additive.

Remark 3.5. In view of Proposition 3.6, 3.7 we obtain that a function µ which
is null-additive, exhaustive and continuous from below defined on a σ-complete D-
lattice E, then µ is strongly order continuous; however, converse of this statement
need not be true, as µ4 is strongly order continuous but not null-additive.

Theorem 3.2. Let µ be a null-additive and order continuous function defined
on a σ-complete effect algebra E. Then µ is null-continuous.

Proof. Let {an} be an increasing sequence in E and µ(an) = 0 (n ∈ N).
Since {an} is an increasing sequence take, bn = an 	 an−1 with a0 = 0. By
2.4(i), we obtain {bn} is orthogonal and

⊕
i≤n bi = an. Since E is σ-complete,

we get a = supn(
⊕

i≤n bi) = supn an exists, and so cn = a 	 (
⊕

i≤n bi) exists.
Now, by 2.5(viii), {cn} is a decreasing sequence. Let d ≤ cn (n ∈ N). Then, by
2.5(iv),

⊕
i≤n bi ≤ a 	 d, for each n. Taking the supremum over n, we obtain

a ≤ a 	 d. Now, by 2.5(v), we get d = 0, so cn ↓ 0. Since
⊕

i≤n bi ≤ a, so a =⊕
i≤n bi⊕(a	(

⊕
i≤n bi)) = (

⊕
i≤n bi)⊕cn. Now, by the order continuity and null-

additivity of µ, we obtain µ(a) = limn→∞ µ((
⊕

i≤n bi)⊕ cn) = limn→∞ µ(cn) = 0.

Thus µ(
∨∞

n=1 an) = 0, hence the result follows.
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Remark 3.6. Converse of Theorem 3.2 need not be true, as µ4 is null-continuous
but not null-additive.

Theorem 3.3. Let µ be a weakly null-additive and strongly order continuous
function defined on a σ-complete D-lattice E. Then µ is null-continuous.

Proof. Let {an} be an increasing sequence in E and µ(an) = 0 (n ∈ N).
Since E is σ-complete, by 2.3, we obtain a = supn an, and hence an ↑ a. Define
a subsequence {anm} of {an} as follows: Let n1 = 1. For m ∈ N, we have
µ(anm) = 0. By 2.6(iv) we obtain a	an ↓ 0 and since anm ≤ an ≤ a, for all n ≥ m,
so by 2.5(vi) we have (a 	 an) ⊕ anm exists. Now, since (a 	 an) ⊕ anm ↓ anm

as n → ∞, (by use of 2.6(i)) therefore from strong order continuity, we can
choose n2 > n1 = 1 such that µ(a1 ⊕ (a 	 an2)) < 1 for all n ≥ 1. Similarly,
n3 > n2 > n1 = 1 such that µ(an2 ⊕ (a 	 an3)) < 1

2
for all n ≥ 1. Thus, we

can choose nm+1 such that nm+1 > nm and µ(anm ⊕ (a 	 anm+1)) < 1
m

. Since
{anm} is an increasing sequence, put bni

= ani
	 ani−1

with an0 = 0. By 2.4(i),
we have {bni

} is orthogonal and
⊕

k≤ni
bk = ani

. Since E is σ-complete, we have
a = supni

⊕
k≤ni

bk = supni
ani

. Thus by 2.3(ii), we define

c =
∞⊕
i=1

(an2i
	 an2i−1

) and d = an1 ⊕ (
∞⊕
i=1

(an2i+1
	 an2i

)).

Since c ⊥ d and d ≤ a, so by 2.2, we have c⊕ d ≤ a if and only if c ≤ a	 d. By
2.5(ii) and (vii), we have

c ≤ (a	(an3	an2))	((an1⊕(an5	an4)⊕. . .) ≤ a	(an3	an2) = an2⊕(a	an3).

Similarly, we obtain c ≤ an4⊕(a	an5). Hence, for every i, we have c ≤ (an2i
⊕(a	

an2i+1
)). Using similar arguments, we obtain, for every i, d ≤ (an2i−1

⊕ (a	an2i
)).

Since µ is monotone, we get for every i,

µ(c) ≤ µ(an2i
⊕ (a	 an2i+1

)) <
1

2i
and µ(d) ≤ µ(an2i−1

⊕ (a	 an2i
)) <

1

2i− 1
.

Hence, we have µ(c) = 0 and µ(d) = 0. Now, since µ is weakly null-additive, so
µ(a) = µ(c⊕ d) = 0. Therefore, µ is null-continuous.

Remark 3.7. Converse of Theorem 3.3 need not be true, as µ4 is null-continuous
but not weakly null-additive.
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