L-fuzzy J-open Sets*

Jin-Ji Tu Shi-Zhong Bai

(Dept. of Mathematics Wuyi University, 529020, Guangdong, P.R.China)

Abstract: In this paper, a new class of sets called J-open sets is introduced in L -topological space. Their properties and structures are studied.

Keywords: J-open set; J-closed set; L-topological space.

1. Introduction

Some classes of nearly open sets in L-topological space have been introduced and studied since Azad(1981) introduced fuzzy semi-open (semi-closed) sets and fuzzy regularly open (closed) sets, such as strongly semi-open sets[2], pre-semiopen sets[3], regularly pre-open sets [7]. In this paper, we give a new kind of sets called J-open sets and then study their structures and properties with other nearly open sets.

2. Preliminaries

In this paper, let X denote a non-empty general set, L a fuzzy lattice, L^X denote the set of all L-fuzzy sets on X, (L^X, δ) denote an L-topological space.

Definition 1[1-5,7]. Let (L^X, δ) be an L-topological space. $A \in L^X$, we denote the interior, closure and complement of A by Int(A), Cl(A), A'. Then

- (1) A is called a pre-open set if $A \leq Int (Cl(A))$ and A is called a pre-closed set if $Cl(Int(A)) \leq A$.
- (2) A is called a regularly open set if A = Int (Cl(A)) and A is called a regularly closed set if A = Cl(Int(A)).
- (3) A is called a regular pre-open set if $A=(A^{\wedge})^{\square}$ and A is called regular a pre-closed set if $A=(A^{\square})^{\wedge}$.
- (4) A is called a semi-open set if there exits $B \in \delta$, such that $B \le A \le Cl(B)$ and A is called a semi-closed set if there exits $B \in \delta'$, such that Int $(B) \le A \le B$.
- (5) A is called a semipre-open set if there exits a pre-open set B, such that $B \le A \le Cl(B)$ and A is called a semipre-closed set if there exits a pre-closed set B, such that

^{*1.} The work is supported by the NNSFs of China (No. 60473009, 60542001).

^{2.} The work is supported by the NSF of Guangdong Province (No. 021358).

^{3.} The work is supported by the SF of Jiangmen City (No. [2007] 28).

Int (B) \leq A \leq B.

Definition 2[3,7]. Let (L^X, δ) be an L-topological space. $A \in L^X$, then

- (1) $A^{\square} = \bigvee \{B \mid B \leq A, A \text{ is a pre-open set} \}$ is called pre-interior of A.
- (2) $A^{\wedge} = \bigwedge \{ B \mid B \ge A, A \text{ is a pre-closed set } \}$ is called pre-closure of A.
- (3) $A_{\Box} = \bigvee \{B \mid B \leq A, A \text{ is a semipre-open set}\}\$ is called semipre-interior of A.
- (4) $A = A \setminus B \mid B \ge A$, A is a semipre-closed set $A \in A$ is called semipre-closure of $A \in A$.

3. J-Open Set

Definition 3. Let (L^X, δ) be an L-topological space and $A \in L^X$, A is called J-open set if $A = (A_{\cap})^{\cap}$ and A is called J-closed set if $A = (A_{\cap})^{\cap}$. We will denote ω as the family of J-open sets and denote ω' as the family of the J-closed sets.

Proposition 1. Regularly pre-open set is J-open set.

Proof. This is immediate to get from the Definition 1 of [3] and Definition 3.

Proposition 2. J-open set is pre-open set.

The reverse of Propositions 1 and 2 are not hold, it can be showed by Example 1.

Example 1. Let X={ a, b}, L={ 0, $\frac{1}{6}$, $\frac{2}{6}$, $\frac{3}{6}$, $\frac{4}{6}$, $\frac{5}{6}$, 1}, for any $\lambda \in L$, $\lambda = 1 - \lambda$, $\delta = \{ (0, 0), (\frac{1}{6}, \frac{3}{6}), (\frac{2}{6}, \frac{3}{6}), (\frac{3}{6}, \frac{5}{6}) (1, 1) \}$. Then, it is evident that (L^X, δ) is a L-topological space.

(1) Since $\left[\left(\frac{2}{6}, \frac{4}{6} \right) \land \right]^{\square} = \left(\frac{2}{6}, \frac{4}{6} \right)^{\square} = \left(\frac{2}{6}, \frac{4}{6} \right)$, so $\left(\frac{2}{6}, \frac{4}{6} \right)$ is a J-open set by definition.

(2) Since
$$\left[\left(\frac{2}{6}, \frac{4}{6} \right) \right]^{\square} = \left(\frac{4}{6}, \frac{4}{6} \right)^{\square} = \left(\frac{4}{6}, \frac{4}{6} \right) \neq \left(\frac{2}{6}, \frac{4}{6} \right)$$
, so $\left(\frac{2}{6}, \frac{4}{6} \right)$

 $\frac{4}{6}$ is not a J-open set by definition.

(3) lnt
$$(Cl(\frac{5}{6}, \frac{5}{6})) = Int(1, 1) = (1, 1), so(\frac{5}{6}, \frac{5}{6}) \le Int(Cl(\frac{5}{6}, \frac{5}{6}))$$

$$\frac{5}{6}$$
 \rightarrow $(\frac{5}{6}, \frac{5}{6})$ is a pre-open set by definition 2, but $[(\frac{5}{6}, \frac{5}{6}) \land]^{\square} = (1, 1)^{\square}$

= (1, 1)
$$\neq$$
 $(\frac{5}{6}, \frac{5}{6})$, by definition, $(\frac{5}{6}, \frac{5}{6})$ is not a J-open set.

Proposition 3. J-open set is independent with open set and semi-open set. It can be showed by Example 2.

Example 2. Let X={ a, b}, L={ 0, $\frac{1}{6}$, $\frac{2}{6}$, $\frac{3}{6}$, $\frac{4}{6}$, $\frac{5}{6}$, 1}, for any $\lambda \in L$,

 $\lambda = 1 - \lambda$, $\delta = \{ (0, 0) (\frac{1}{6}, \frac{3}{6}) (\frac{2}{6}, \frac{3}{6}), (\frac{3}{6}, \frac{5}{6}) (1, 1) \}$, it is evident that $(-1)^{X}$. δ) is a L-topological space.

(1) Since
$$(\frac{3}{6}, \frac{5}{6}) \in \delta$$
, but $[(\frac{3}{6}, \frac{5}{6}) \land]^{\square} = (1, 1)^{\square} \neq (\frac{3}{6}, \frac{5}{6})$, so

 $(\frac{3}{6}, \frac{5}{6})$, is an open set not a J-open set.

(2) Since
$$(\frac{2}{6}, \frac{4}{6})$$
 is a J-open set by (1) of example 1, but $(\frac{2}{6}, \frac{4}{6}) \notin \delta$, $(\frac{2}{6}, \frac{2}{6})$

 $\frac{4}{6}$ is a J-open set not an open set.

(3) Since $(\frac{2}{6}, \frac{4}{6})$ is a J-open set, by simple computation, we find there exit not an

open set B such that B $\leq (\frac{2}{6}, \frac{4}{6}) \leq Cl(B)$, so $(\frac{2}{6}, \frac{4}{6})$ is not a semi-open set.

(4) Since $(\frac{1}{6}, \frac{3}{6}) \in \delta$, it is an open set, also a semi-open set, but $[(\frac{3}{6}, \frac{5}{6})]^{\square}$

$$= (\frac{2}{6}, \frac{3}{6})^{\square} = (\frac{2}{6}, \frac{3}{6}) \neq (\frac{1}{6}, \frac{3}{6}), (\frac{1}{6}, \frac{3}{6}) \text{ is not a J-open set.}$$

Proposition 4. Let (L^X, δ) be a L-topological space and $A \in L^X$, then $(A_{\wedge})^{\square} \in \omega$ and $(A_{\square})^{\wedge} \in \omega'$.

Lemma 1. Let (L^X, δ) be a L-topological space, $A \in L^X$, then:

- (1)Int $(Cl(A)=[Cl(A)]^{\square}$.
- $(2)Cl(Int(A)) = [Int(A)]^{\wedge}.$

Lemma2 [3]. (1) Regularly pre-open set is pre-open set.

(2) Regularly open set is regular pre-open set.

Lemma3 [4]. Let (L^X, δ) be a L-topological space, $Y \neq X$, $Y \subset X$, $\delta \mid Y$ is the restriction of δ on Y, for any $A \in L^X$, $A \mid Y$ is the restriction of A on Y, then:

- (1) $IntA \mid Y \leq Int(A \mid Y)$.
- $(2) \operatorname{Cl}(A) \mid Y \leq \operatorname{Cl}(A \mid Y).$
- (3) A' $Y \leq (A \mid Y)'$.

Lemma 4 [5]. Let (L^X, δ) be a L-topological space. $Y \subset X, Y \neq X$, so $(L^Y, \delta | Y)$ is a subspace of (L^X, δ) , $A \in L^X$, A is a pre-open(closed) set, then A | Y is a pre-open(closed) set in subspace.

Theorm 1. Let (L^X, δ) be a L-topological space. $Y \subset X, Y \neq X$, so $(L^Y, \delta | Y)$ is a subspace of (L^X, δ) , $A \in L^X$, A is a J-open(closed) set in (L^X, δ) , and $A \cap Y \leq A$

(A|Y) . then A|Y is a J-open(closed) set in subspace.

Proof. $A = (A_{\wedge})^{\square}$, so $A \mid Y = (A_{\wedge})^{\square} \mid Y$, we need to prove $(A_{\wedge})^{\square} \mid Y = [(A \mid Y)_{\wedge})]^{\square}$ First, we prove $(A_{\wedge} \mid Y)^{\square} = (A_{\wedge})^{\square} \mid Y$, since $(A_{\wedge})^{\square} \leqslant A_{\wedge}$, so $(A_{\wedge})^{\square} \mid Y \leqslant A_{\wedge} \mid Y$, by proposition 2, $(A_{\wedge})^{\square}$ is a pre-open set, by lemma 4, $(A_{\wedge})^{\square} \mid Y$ is a pre-open set, thus

$$(A_{\wedge}) \ \Box \ | \ Y = [\ (A_{\wedge}) \ \Box \ | \ Y] \ \Box \leqslant (A_{\wedge} \ | \ Y) \ \Box .$$
 On the other hand, since
$$(A_{\wedge} \ | \ Y) \ \Box \leqslant (A_{\wedge}) \ \Box , \text{ so } \ (A_{\wedge} \ | \ Y) \ \Box = (A_{\wedge} \ | \ Y) \ \Box \ | \ Y \leqslant (A_{\wedge}) \ \Box \ | \ Y. \text{ thus}$$

$$(A_{\wedge}|Y) = (A_{\wedge}) |X|$$

Second, we prove $A \land | Y = (A | Y) \land$. Since $A \leqslant Cl(A)$, so $A | Y \leqslant Cl(A) | Y$, and $A \land$ is a pre-closed set, by lemma 4, so $A \land | Y$ is a pre-closed set, then $(A | Y) \land \leqslant (A \land | Y) \land = A \land | Y$. and by suppose $A \land | Y \leqslant (A | Y) \land$, we have $A \land | Y = (A | Y) \land$.

Then, $(A \land) \sqcap | Y = (A \land | Y) \sqcap = [(A | Y) \land) \rceil \sqcap$.

Now, we can obtain the relation between J-open set and some other nearly open set showed by following diagram:

Regularly open set \rightarrow Regularly pre-open set \rightarrow J-open set \rightarrow Pre-open set \rightarrow Semipre-open set \rightarrow Presemi-open set.

4. References

- [1] K.K.Azad, on fuzzy semicontinuity , fuzzy almost continuity and weakly continuity, J. Math.Anal.82(1981) $14\sim32$.
- [2] Shi-Zhong Bai, Fuzzy stongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets and Systems, $52(1992)345\sim351$.
- [3] Shi-Zhong Bai, Pre-semiclosed sets and ps-convergence in L-fuzzy topological spaces, J.Fuzzy Math.9(2001) 497~509.
- [4] Y.M.Liu, M.K.Luo, Fuzzy Topology. Singarpore, World Scientific Publishing, 1998.
- [5] A.S.Mashour, M.H.Ghanim, M.A.Fath.Alla, On fuzzy non-continuous mappings, Bull. CleuttaMath.Soc. 78(1986) 57~69.
- [6] G.J. Wang, Theory of L-fuzzy Topological Spaces, Press of Shanxi Normal University, Xi an, China, 1988.
- [7] Xiu-Yun Wu, Shi-Zhong Bai, Regularly pre-open sets and regular pre-continuity in L-topological space, Fuzzy Information and Engineering, 6(2006)6~13.