Z-open sets in L-topological spaces*

Jun-Ling Zhu Shi-Zhong Bai

(Dept. of Mathematics Wuyi University, 529020, Guangdong, P.R.China)

Abstract: In this paper, two classes of sets called Z-open sets and B-open sets are introduced in L-topological spaces. Then, we study their properties and establish their structure relations with known nearly open sets.

Keywords: L-topological space; Z-open set; B-open set;

1. Introduction

Since semi-topological classes and semi-topological properties were introduced in Crossley and Hildebrand's article in 1972, many researchers have introduced many kind of sets, such as semi-open, regular-open, pre-open, semi-regular open, semi-regularly semiopen, strongly semi-open, semi-preopen, regularly pre-open, L-regularly pre-semiopen sets in various spaces [1-7]. Some interesting results have been obtained. Thus, research in this area has been greatly extended. In this paper we introduce Z-open sets, B-open sets, Z-closed sets and B-open sets in L-topological spaces and establish their structure relations with known nearly open sets. It is a continuation of such work.

2. Preliminaries

In this paper, X will denote non-empty set; L will denote a fuzzy lattice; L^x will denote the set of all L-fuzzy sets on X. Let (L^x, δ) be an L-topology space (simply written as L-ts) and $A \in L^x$. Call A^c , A^c is the interior and the closure of A, respectively.

Definition 1 [1-7]. Let (L^x, δ) be an L-topological space, $A \in L^x$, then A is called: (1) A semi-open set iff there is a $B \in \delta$ such that $B \leq A \leq B$; A semi-closed set iff there is a $B \in \delta$ such that $B^\circ \leq A \leq B$.

- * Fig. The work is supported by the NNSFs of China (No. 60473009, 60542001).
- 2 The work is supported by the NSF of Guangdong Province (No. 021358).
- The work is supported by the SF of Jiangmen City (No. [2005] 102).

- (2) A pre-open set iff $A \leq A^{-\circ}$; A pre-closed set iff $A \geq A^{\circ}$.
- (3) A strongly semi-open set iff there is a $B \in \delta$ such that $B \leq A \leq B^{\circ}$; A strongly semi-closed set iff there is a $B \in \delta$ such that $B^{\circ} \leq A \leq B$.
- (4) A pre-semiopen set iff $A \leq (A^{\circ})$; A pre-semiclosed set iff $A \geq (A^{\circ})$.
- (5) A semi-regularly semi-open set iff A=A-: A semi-regularly semi-closed set iff A=A-.
- (6) A regularly semi-open set iff $A=(A^{\circ})$; A regularly semi-closed set iff $A=(A^{\circ})$.
- (7) A regularly open set iff $A=A^{\circ}$: A regularly closed set iff $A=A^{\circ}$.
- (8) A semi-preopen set iff there is a B is pre-open set such that $B \le A \le B$; A semi-preclosed set iff there is a B is pre-closed set such that $B \le A \le B$.

Definition 2 [2-4,7]. Let (L^x, δ) be an L-topological space, $A \in L^x$, then

- (1) $A^{\sqcup} \vee \{B: B \leq A, B \text{ is pre-open set } \}$.
- (2) $\Lambda = \Lambda \{B: B \ge A. B \text{ is pre-closed set } \}$.
- (3) $A_n = \bigvee \{B: B \leq A, B \text{ is semi-preopen set } \}.$
- (4) $\Lambda_A = \bigwedge \{B: B \geqslant A, B \text{ is semi-preclosed set } \}$,
- (5) $A_{\Lambda} = \bigvee \{B: B \leq A, B \text{ is pre-semiopen set } \}$,
- (6) $A = \bigwedge \{B: B \ge A, B \text{ is pre-semiclosed set } \}$,

are called the preinterior, preclosure, semi-preinterior, semi-preclosure, pre-semiinterior, pre-semiiclosure of A, respectively.

Definition 3 [5,6]. Let (L^x, δ) be an L-topological space, $A \in L^x$, then A is called:

- (1) A regularly pre-open set iff $A=A^{\cap \square}$: A regularly pre-closed set iff $A=A^{\square \wedge}$.
- (2) A regularly pre-semiopen set iff $A=A_{-\Delta}$; A regularly pre-semiclosed set iff $A=A_{\Delta}$.

Definition 4 [9]. Let (L^x, δ) be an L-topological space, $A \in L^x$, then A is called:

- (1) A J-open set iff $A=(A_{\wedge})^{\sqcup}$;
- (2) A J-closed set iff $A=(A_{\square})^{\wedge}$.

Lemma 1 [3]. For any $A \in L^{\times}$, the following inequalities are right. $A^{\circ} \leq A_{\circ} \leq A_{1} \leq A_{2} \leq A_{3} \leq A_{4} \leq A_{5} \leq A_$

3. Z-open sets and B-open sets

Definition 5. Let (L^x, δ) be an L-topological space, $A \in L^x$, then A is called:

- (1) A Z-open set iff $A=A_{\triangle \Box}$:
- (2) A Z-closed set iff $A=A_{\square Z}$.

 μ will always denote the family of Z-open sets, μ' will always denote the family of Z-closed sets in (L^x , δ).

Definition 6. Let (L^x, δ) be an L-topological space, $A \in L^x$, then A is called:

- (1) A B-open set iff $A=(A^{\wedge})_{\square}$;
- (2) A B-closed set iff $A=(A^{\square})_{\wedge}$.

Theorem 1. Let (L^x, δ) be an L-topological space, $A \in L^x$, if A is a J-open set, then A is a Z-open set.

Proof. This is easy.

Theorem 2. Let (L^x, δ) be an L-topological space, $A \in L^x$, if A is a B-open set, then A is a Z-open set.

Proof. For any $A \in L^{\times}$, because $A=(A^{\wedge})_{\sqcup}$, by Lemma 1, $A^{\wedge} \geqslant A_{\wedge}$, $so(A^{\wedge})_{\square} \geqslant A_{\wedge \square}$. By Definitions 1, 2, A is a semi-preopen. So $A=A_{\sqcup} \leqslant A_{\wedge \square}$, then $A=A_{\wedge \square}$.

Theorem 3. Let (L^x, δ) be an L-topological space, $A \in L^x$, if A is a Z-open set, then A is a semi-preopen set.

Proof. This is immediate to get the conclusion from Definitions 1, 2.

Theorem 4. Let (L^x, δ) be an L-topological space, $A \in L^x$, if A is a semi-regularly semiopen set, then A is a Z-open set.

Proof. For any $A \in L^{\times}$, if A is a semi-regularly semiopen set, then A is not only semi-open set but also semiclosed set (Bai [4]), hence A is a pre-semiopen set and pre-semiclosed set (Bai[3]), so A is a semi-preopen set and semi-preclosed set. By Definitions 1, 2, $A = A_{\square} = A_{\wedge}$, $A = A_{\square} = A_{\wedge\square}$ and $A = A_{\wedge} = A_{\square}$. So A is a Z-open set and A is a Z-closed set.

Theorem 5. Let (L^x, δ) be an L-topological space, $A \in L^x$. If A is a regularly semi-open set, then A is a B-open set.

Proof. The proof is easy and omitted.

The reverses Theorem 1-5 are not hold. It can be showed by Example1.

Example 1. Let $X = \{a, b\}$. $L = \{0, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, 1\}$, and for any $a \in L$, a' = 1-a. Let $\delta = \{(0,0), (\frac{1}{6}, \frac{3}{6}), (\frac{2}{6}, \frac{3}{6}), (\frac{3}{6}, \frac{5}{6}), (1,1)\}$. It is evident that (L^x, δ) is an L-ts.

It is easy to get the following conclusion. Let $A = (\frac{3}{6}, \frac{3}{6})$, then $A_{\land \Box} = (\frac{3}{6}, \frac{3}{6}) = A$, so A is a Z-open set. But $(A_{\land})^{\Box} = (\frac{3}{6}, \frac{3}{6})^{\Box} = (\frac{2}{6}, \frac{3}{6}) \neq A$; $(A^{\land})_{\Box} = (\frac{3}{6}, \frac{4}{6})_{\Box} = (\frac{3}{6}, \frac{4}{6}) \neq A$, so A is a not J-open set and A is not a B-open set, either.

(2) Let $A = (\frac{5}{6}, \frac{5}{6})$, it is obviously that A is a semi-preopen set. But $A_{\land \square} = (\frac{5}{6}, \frac{5}{6})_{\land \square}$

 $=(1.1)_{0} \neq A$, so A is not a Z-open set.

Let
$$A = (\frac{4}{6}, \frac{4}{6})$$
, then $A = (\frac{4}{6}, \frac{4}{6}) = (\frac{4}{6}, \frac{4}{6}) = A$, so A is a Z-open set. But $A = (\frac{4}{6}, \frac{4}{6}) = (1,1) \neq A$, so A is not a semi-regularly semi-open set.

(4) Let
$$A = (\frac{4}{6}, \frac{2}{6})$$
, then $(A')_{CI} = (\frac{4}{6}, \frac{2}{6})_{LI} = (\frac{4}{6}, \frac{2}{6}) = A$, so A is a B-open set. But $(A')_{CI} = (\frac{4}{6}, \frac{3}{6}) = (\frac{4}{6}, \frac{3}{6}) = (\frac{4}{6}, \frac{3}{6}) \neq A$, so A is not a regularly semi-open set.

Let
$$A = (\frac{2}{6}, \frac{4}{6})$$
. then $(A_A)^{\square} = (\frac{2}{6}, \frac{4}{6})^{\square} = (\frac{2}{6}, \frac{4}{6}) = A$, so A is a J-open set. But $A = (\frac{2}{6}, \frac{4}{6}) = (1,1) = (1,1) \neq A$, so A is not a semi-regularly semi-open set. Because

$$(A^{-})_{\square} = ((\frac{2}{6}, \frac{4}{6})^{\wedge})_{\square} = (\frac{4}{6}, \frac{4}{6})_{\square} = (\frac{4}{6}, \frac{4}{6}) \neq A, A \text{ is not a B-open set, either.}$$

(6) Suppose that
$$A = (\frac{3}{6}, \frac{3}{6})$$
, then $A = (\frac{3}{6}, \frac{3}{6}) = (\frac{4}{6}, \frac{3}{6}) = (\frac{3}{6}, \frac{3}{6}) = A$, so A is a semi-regularly semi-open set. By Example 1(1), so A is not a J-open set and A is not a B-open set. either.

(7) Let
$$A = (\frac{4}{6}, \frac{2}{6})$$
, then $(A^{\wedge})_{\sqcup} = (\frac{4}{6}, \frac{2}{6})_{\sqcup} = (\frac{4}{6}, \frac{2}{6}) = A$, so A is a B-open set. But $A = (\frac{4}{6}, \frac{2}{6})_{=} = (\frac{4}{6}, \frac{3}{6})_{=} = (\frac{4}{6},$

From Example 1 we can obtain the following proposition.

Proposition 1. J-open set, semi-regularly semi-open set and B-open set are independent respectively.

Remark 1. Let (L^x, δ) be an L-topological space, $A \in L^x$. If A is a regularly pre-semiopen set, then A need not be Z-open set.

Example 2. In Example 1, let $A = (\frac{4}{6}, \frac{1}{6})$, then $A_{-\Delta} = (\frac{4}{6}, \frac{1}{6})_{-\Delta} = (\frac{4}{6}, \frac{1}{6})_{\Delta} = (\frac{4}{6}, \frac{1}{6}) = A$, so A is a regularly pre-semiopen set. But $A_{-\Box} = (\frac{4}{6}, \frac{1}{6})_{-\Box} = (0,0) \neq A$, so A is not a Z-open.

Remark 2. The intersection (union) of any two Z-open sets (B-open sets) need not be a Z-open set (B-open set). This is shown by the follow example.

Example 3. In Example 1, let $A = (0, \frac{5}{6})$, $B = (1, \frac{1}{6})$, then $A = A_{\land \Box}$, $B = B_{\land \Box}$, but $(A \lor B)_{\land \Box} = (1, \frac{5}{6})$, so $(A \lor B)$ is not a Z-open set. Because $(A \land B)_{\land \Box} = (0, \frac{1}{6})_{\land \Box} = (0, 0) \neq (0, \frac{1}{6})$, $(A \land B)$ is not a Z-open set, either. Similarly B-open set has the conclusion.

Proposition 2. Let (L^x, δ) be an L-topological space, $A \in L^x$, then $A \in \mu$ iff $A' \in \mu'$.

Proof. By Definition 4, it is immediate to get the conclusion.

Theorem 6. Let (L^x, δ) be an L-topological space, $A \in L^x$.

- (3) If $A=A_{\cup}$, then $A_{\wedge}=A_{\wedge\cup}$;
- (2) If $A=A_{\wedge}$, then $A_{\square}=A_{\wedge\square}$.

Proof. By Definitions 1, 2 and 4, it is immediate to get the conclusion.

Theorem 7. Let X_1 and X_2 be L-topological spaces such that X_1 is product-related to X_2 . Then the product $A \times B$ of a Z-open set(B-open set) A of X_1 and a Z-open set(B-open set) B of X_2 is a Z-open set (B-open set) of the Product space $X_1 \times X_2$.

Proof. This follows similarly the Theorem 2.8 in [2].

4. Conclusion

In this paper we introduce the Z-open set, B-open set and Z-closed set, B-closed set in L-topological spaces, and establish their structure relations with known nearly open sets. Therefore we can easily obtain the following diagram.

Semi-regularly semiopen set

regularly pre-semiopen set

References

- [14] K.K.Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J.Math.Anal.Appl. 82 (1981), 14-32.
- [2] S Z.Bai, Fuzzy strongly semiopen sets and fuzzy strongly semi-continuity, Fuzzy Sets and Systems, 51(1992) 345-351.
- [3] S.Z.Bai, Pre-semiclosed sets and ps-convergence in L-fuzzy topological spaces, J Fuzzy Math.9 (2001), 497-509.
- [4] S.Z.Bai, Semi-regularly semiopen elements and regularly semiopen elements in topological modicular lattices. Fuzzy Systems and Math.1 (1991), 38-42.
- [5] X.Y.Wu, S.Z.Bai, Regularly pre-open sets and regularly pre-continuity in L- topological spaces, Fuzzy Information and Engineering. (2006), 6-13.
- [6] L.S.Huang, S.Z.Bai, L-regularly pre-semiopen sets and S-semicontinuity, Fuzzy Information and Engineering, (2006), 14-20.
- [7] A.S.Mashour, M.H.Ghanim and M.A.Fath Alla, On fuzzy non-continuous mappings, Bull. Calcutta Math.Soc.78 (1986)57-69.
- [8] G J. Wang. Theory of L-fuzzy Topological Spaces, Press of Shanxi Normal University, Xi'an, China, 1988.
- [9] J.J.Tu. J-open sets in L-topological spaces, submitted.