On the representation of £ukasiewicz-Moisil algebra by L-fuzzy sets

Lemnaouar Zedam and Abdelaziz Amroune *

Abstract

The aim of the paper is the elaboration of a representation theory of θ -valued involutive £ukasiewicz-Moisil algebra, the concept of L-fuzzy sets playing the role that the notion of field of sets plays for the representation of Boolean algebras. This theory provides both a semantic interpretation of £ukasiewicz many valued logic and logical basis to L-fuzzy set theory.

1 Introduction.

In 1941 [10], Moisil introduced the notion of £ukasiewicz-Moisil algebra under the name £ukasiewician algebras, as an algebraic counterpart of the £ukasiewicz many-valued logics. The theory of £ukasiewicz-Moisil algebras has been developed both as a tool for studying certain non-classical logics and as an algebraic theory having its own interest; besides, it is now considered one of the fundamental formalizations of fuzzy logic. The reader is referred e.g. to [1, 2, 3, 4, 5, 13, 15, 16].

Not long after Zadeh published his important paper "fuzzy sets" [18] Goguen published the paper "L-fuzzy sets" [8] such that the concept of L-fuzzy sets (briefly LFSs) is a generalization of the concept of fuzzy sets and takes the latter as a special case when L = [0,1]. There are several different kinds of understanding and employment of the concept of an L-fuzzy set distinguished by how to specify the lattice L (see eg., [7, 17, 19]). An L-fuzzy set on a universe X (LFS, for short) is a function $A: X \longrightarrow L$. One of the understandings of L is that ($L, \leq_L, *$) is a complete lattice equipped with a multiplication operator * satisfying certain conditions as shown in the initial paper of Goguen [8]. On the other hand, many investigation require L to be more general and posses no extra structure other than lattice structure, and the second understanding of the meaning of L is that (L, \leq_L, \aleph) is a complete lattice with an order-reversing involution \aleph .

Supported by Laboratory of Pure and Applied Mathematics, M'sila University. 2000 Mathematics Subject Classification. 03G10, 03G20, 06B23, 03E72.

Key words and phrases. £ukasiewicz-Moisil algebra, L-fuzzy set, Representation theorem.

The second understanding of L is widely used by researchers in the field of fuzzy algebra. For example, if we consider the meaning of L is that L is a chain (ie., totally ordered set) with largest element T and least element \perp , Moisil [14] showed that the set $F_L(X)$ of L-fuzzy sets on a universe X can be equipped with a structure of $\bar{\theta}$ -valued £ukasiewicz-Moisil algebra, where $\bar{\theta}$ is the order type of L. Conversely, Ponasse [15] proved that every θ valued £ukasiewicz-Moisil algebra $(\mathcal{L}, J, (\varphi_{\alpha})_{\alpha \in J^0})$ where θ is the order type of the chain J can be embedded in an algebra of the form $F_L(X)$, where L is the chain of all ideals of $J - \{0\}$; thus L is of type $\bar{\theta} \geq \theta$. Rudeanu [16] proved that under certain hypotheses on $C(\mathcal{L})$ the Boolean sublattice of complemented elements of £, every θ -valued £ukasiewicz-Moisil algebra $(\pounds, J, (\varphi_{\alpha})_{\alpha \in J^0})$ can be embedded in an algebras of the form $F_L(X)$, where L is the initial chain J; thus L is of type $\bar{\theta} = \theta$. In [15] Ponasse has also studied the representability of involutive θ -valued £ukasiewicz-Moisil algebra $(\pounds, J, (\varphi_{\alpha})_{\alpha \in J^0}, (\Psi_{\alpha})_{\alpha \in J^1}, N, n)$ as algebras of the form $F_L(X)$, where L is a regular chain equipped with an order-reversing involution \aleph . This problem was also investigated in [4, 5], where Coulon proved that under certain conditions on J and $C(\mathcal{L})$, every involutive θ -valued £ukasiewicz-Moisil algebra can be embedded in an algebras of the form $F_L(X)$, where L is the MacNeille completion of J; thus L is of type $\bar{\theta} \geq \theta$.

In the present paper we want to study, in a new way, the representability of involutive θ -valued £ukasiewicz-Moisil algebra as algebras of the form $F_L(X)$, where L has an order type $\bar{\theta} = \theta$ (i.e., there exists an isomorphism between L and J).

In the next section, we will remind the reader what an involutive θ -valued £ukasiewicz-Moisil algebra is [11 - 13] and we recall definitions and results on L-fuzzy sets [8] that are needed. Section 3 describes our main results.

2 Preliminaries

2.1 £ukasiewicz-Moisil algebra

In this section, we give some notations, definitions and results on which our work in this paper is based. We note by:

$$J^{0}=J-\left\{ 0\right\} ,J^{1}=J-\left\{ 1\right\} ,J^{01}=J-\left\{ 0,1\right\} .$$

Definition 1 (Moisil [11 - 13]) An involutive θ -valued £ukasiewicz-Moisil algebra is a 6-tuple $(\pounds, J, (\varphi_{\alpha})_{\alpha \in J^0}, (\Psi_{\alpha})_{\alpha \in J^1}, n, N)$, where:

- 1) $(\mathcal{L}, \vee, \wedge, 0, 1)$ is a distributive lattice with largest element 1 and least element 0. The Boolean sublattice of complemented elements of \mathcal{L} is denoted $C(\mathcal{L})$;
- 2) I is a chain with largest element 1 and least element 0 and whose order type is θ ;

```
3) n is an order reversing involution in J;
```

- $\{i\}$ N is an order reversing involution in £ satisfying for all $x \in C(\pounds)$,
- $N(x) = \bar{x}$, $(\bar{x} \text{ is the complement element of } x)$;
- 5) $(\varphi_{\alpha})_{\alpha\in J^0}$ is a family of morphisms $\pounds \longrightarrow C(\pounds)$ such that: $\forall \alpha,\beta\in J^0$:
 - (i) $\varphi_{\alpha}(0) = 0$, $\varphi_{\alpha}(1) = 1$
 - (ii) If $\alpha \leq \beta$ then $\varphi_{\beta} \leq \varphi_{\alpha}$
 - (iii) $\varphi_{\alpha} \circ \varphi_{\beta} = \varphi_{\beta}$
- (iv) If $\varphi_{\alpha}(x) = \varphi_{\alpha}(y)$ for all $\alpha \in J^0$ then x = y (Moisil's determination principle):
- $(\Psi_{\alpha})_{\alpha \in J^1}$ is a family of morphisms $\mathcal{L} \longrightarrow C(\mathcal{L})$ such that:
 - (i) $\Psi_{\alpha} \leq \varphi_{\alpha}$, for all $\alpha \in J^{01}$
 - (ii) $\varphi_{\alpha}N = N\Psi_{n\alpha}$, for all $\alpha \in J^0$

We use the same symbols \leq , 0, 1 for the partial order, least and greatest elements of J, respectively, and for those of \mathcal{L} . We shall freely note $x \leq y$ or $y \geq x$ in the sequel.

Example 1. Let $(B, \land, \lor, \neg, 0, 1)$ be a boolean algebra. The set

$$D(B) = \{f/f: J \longrightarrow B, i \leq j \Rightarrow f(j) \leq f(i)\}$$

of all decreasing functions from J to B can be made into an involutive θ -valued £ukasiewicz-Moisil algebra where the operations of the lattice $\{D(B), \wedge, \vee, 0, 1\}$ are defined for all $i \in J$ by

$$(f \wedge g)(i) = f(i) \wedge g(i)$$

$$+f \vee g)(i) = f(i) \vee g(i)$$

$$0(i) = 0$$
, $1(i) = 1$.

And

$$(\phi_{\lambda} f)(i) = f(n\alpha),$$
 for all $\alpha \in J^0$

$$(\Psi_{\alpha} f)(i) = \overline{f(n\alpha)}, \quad \text{for all } \alpha \in J^1$$

$$(Nf)(i) = \overline{f(ni)}.$$

Definition 2 A filter of a lattice $(L, \vee, \wedge, 0, 1)$ is a nonempty subset F of L such that:

- (i) If $x, y \in F$, then $x \wedge y \in F$
- (ii) If $x \in F$ and $x \leq y$, then $y \in F$.

A filter F of L is called proper filtre if it does not contains 0.

Definition 3 Let L be a lattice and U a proper filter in L. Then U is said to be a maximal filter (more usually known as an ultrafilter) if the only filter properly containing U is L.

We will need the following Theorem and Lemma.

Theorem 1 ([9], Theorem 2.1) Let B be a Boolean algebra and let X be the set of its ultrafilters. Then B is isomorphic to $\mathcal{P}(X)$, the embedding monomorphism being given by

$$\sigma(x) = \{ U \in X \mid x \in U \}.$$

Lemma 1 ([9], Lemma 3.2) Let $(L, J, (\varphi_{\alpha})_{\alpha \in J^0}, (\Psi_{\alpha})_{\alpha \in J^1}, N)$ be an involutive θ -valued £ukasiewicz-Moisil algebra. Then

$$(\Psi_{\beta} \geq \varphi_{\alpha}, \text{ for all } 0 < \beta < \alpha < 1)$$

Definition 4 Two involutive θ -valued £ukasiewicz-Moisil algebras $(\pounds, J, (\varphi_{\alpha})_{\alpha \in J^0}, (\Psi_{\alpha})_{\alpha \in J^1}, n, N)$ and $(\pounds', J, (\varphi'_{\alpha})_{\alpha \in J^0}, (\Psi'_{\alpha})_{\alpha \in J^1}, n, N')$ are said to be homomorphic if there exists a morphism $f : \pounds \longrightarrow \pounds'$ such that:

(i)
$$f \circ \varphi_{\alpha} = \varphi'_{\alpha} \circ f$$
, for all $\alpha \in J^0$;

(ii)
$$f \circ N = N' \circ f$$
.

If f is a monomorphism, we say that \mathcal{L} can be embedded into \mathcal{L}' .

We note that (i) and (ii) implies $f \circ \Psi_{\alpha} = \Psi'_{\alpha} \circ f$, $\forall \alpha \in J^1$.

2.2 L-fuzzy sets

We consider L-fuzzy set as a mapping from a nonempty set X into a complete chain L with largest element \top and least element \bot , provided with an unary, involutive, order-reversing operator \tilde{n} . In particular, L can be the Int([0,1]), where Int([0,1]) stands for the set of all closed subinterval of [0,1]. But will not be studied here. The class of L-fuzzy sets on a universe X will be denoted $F_L(X)$.

Further the set $F_L(X)$ can be equipped with a structure of involutive θ -valued £ukasiewicz-Moisil algebra $(F_L(X), L, (N_i)_{i \in L^{\perp}}, (N'_j)_{j \in L^{\top}}, \tilde{N}, \tilde{n})$ as follows:

for any
$$A, B \in F_L(X), i \in L^{\perp} = L - \{\bot\}, j \in L^{\top} = L - \{\top\}, j \in L^{\top} = L$$

1) The structure $(F_L(X), \cup, \cap)$ of all L-fuzzy sets on a universe X is a distributive lattice with the least element \emptyset defined by $\emptyset(x) = \bot$, for all $x \in X$ and the greatest element X. The union and the intersection are defined as follows:

$$A \cup B(x) = \sup(A(x), B(x)),$$
 for all $x \in X$.

$$A \cap B(x) = inf(A(x), B(x)),$$
 for all $x \in X$.

2) $N_i: F_L(X) \longrightarrow \mathcal{P}(X)$ defined by:

$$N_i(A) = \{x \in X \mid A(x) > i\}$$

3)
$$N'_j: F_L(X) \longrightarrow \mathcal{P}(X)$$
 defined by:

$$N'_i(A) = \{x \in X \mid A(x) > j\}.$$

4)
$$\tilde{N}A(x) = \tilde{n}(A(x)), \quad \text{for all } x \in X.$$

3 Representation theorem

In this section, we will show under the condition that J is a complete chain, every involutive θ -valued £ukasiewicz-Moisil algebra can be embedded in an algebra of L-fuzzy sets. But first we prove two lemmas.

Lemma 2 let J be a complete chain with an unary, involutive, order-reversing operator n. Then the pair (L, \leq_L) defined by

$$L = \{(\alpha, n\alpha) / \alpha \in J\},\$$

$$(\alpha, n\alpha) \leq_L (\beta, n\beta) \Leftrightarrow \alpha \leq \beta$$

is a complete chain with an unary, involutive, order-reversing operator \tilde{n} defined by

$$\tilde{n}(\alpha, n\alpha) = (n\alpha, \alpha), \quad \text{for all } \alpha \in J.$$

Proof. In [6, Lemma 2.1] it is proven that if J a complete lattice with an unary, involutive, order-reversing operator n, then the pair (L, \leq_L) defined by

$$L = \{(\alpha, \beta) \in J \times J / \alpha \le n\beta\},\$$

$$(\alpha_1, \beta_1) \le_L (\alpha_2, \beta_2) \Leftrightarrow \alpha_1 \le \alpha_2 \land \beta_1 \ge \beta_2$$

is a complete lattice.

Now, consider that $\beta = n\alpha$ and J is a complete chain with an unary, involutive, order-reversing operator n. Hence, we may conclude that the pair (L, \leq_L) defined by

$$L = \{(\alpha, \beta) \in J \times J \ / \ \alpha \le n\beta\} = \{(\alpha, n\alpha) \ / \ \alpha \in J\},$$
$$(\alpha, n\alpha) \le_L (\beta, n\beta) \Leftrightarrow \alpha \le \beta$$

is a complete chain.

Moreover, since n is an unary, involutive, order-reversing operator in J we have that \tilde{n} defined by

$$\tilde{n}(\alpha, n\alpha) = (n\alpha, \alpha), \quad \text{for all } \alpha \in J$$

is an unary, involutive, order-reversing operator in L.

It is also evident from the definition of lattices isomorphism, that the mapping ℓ defined as

$$\begin{array}{cccc} \ell: & J & \longrightarrow & L \\ & \alpha & \longmapsto & (\alpha, n\alpha) \end{array}$$

is an isomorphism between the chains J and L.

Lemma 3 Let $(\pounds, J, (\varphi_{\alpha})_{\alpha \in J^0}, (\Psi_{\alpha})_{\alpha \in J^1}, N)$ be an involutive θ -valued £ukasiewicz-Moisil algebra. Then

$$\sup\{\alpha \in J^0 / \varphi_\alpha(x) \in U\} = \sup\{\beta \in J^1 / \Psi_\beta(x) \in U\}.$$

Proof. For all $\alpha \in J^0$ and $\beta \in J^1$ we can distinguish at least two cases. In the one hand, if $\beta < \alpha$, then from the inequality $(\Psi_{\beta} \geq \varphi_{\alpha}, \ for \ all \ 0 < \beta < \alpha < 1)$ given by Lemma1 it follows that $\varphi_{\alpha}(x) \in U$ implies $\Psi_{\beta}(x) \in U$. This means that

$$\sup\{\beta \in J^1 / \Psi_\beta(x) \in U\} \le \sup\{\alpha \in J^0 / \varphi_\alpha(x) \in U\}$$
 (1)

In the other hand, if $\beta \geq \alpha$ then $\Psi_{\beta} \leq \Psi_{\alpha} \leq \varphi_{\alpha}$. Moreover, if $\Psi_{\beta}(x) \in U$ then $\varphi_{\alpha}(x) \in U$. This means that

$$\sup\{\beta \in J^1 / \Psi_\beta(x) \in U\} \ge \sup\{\alpha \in J^0 / \varphi_\alpha(x) \in U\}$$
 (2)

It is clear from (1) and (2) that:

$$\sup\{\alpha \in J^0 / \varphi_\alpha(x) \in U\} = \sup\{\beta \in J^1 / \Psi_\beta(x) \in U\}.$$

Theorem 2 The mapping $f: \mathcal{L} \longrightarrow F_L(X)$ defined, $\forall x \in \mathcal{L}$ and $\forall U \in X$ by: $f(x)(U) = (\lambda_x, n\lambda_x)$, where

$$\lambda_x = \sup \{ \alpha \in J^0 / \varphi_\alpha(x) \in U \},\,$$

is a monomorphism between the involutive θ -valued Lukasiewicz-Moisil algebra $(\mathcal{L}, J, (\varphi_{\alpha})_{\alpha \in J^1}, (\Psi_{\alpha})_{\alpha \in J^1}, n, N)$ and $\left(F_L(X), L, (N_{\alpha})_{\alpha \in L^\perp}, (N'_{\alpha})_{\alpha \in L^\top}, \tilde{N}, \tilde{n}\right)$ the algebra of L-fuzzy sets, where J is a complete chain, X is the set of ultrafilters of $C(\mathcal{L})$ and L is the complete chain with \tilde{n} defined as in Lemma 2.

Proof. Since J is a complete chain with n we obtain that $f(x)(U) \in L$, i.e., f is well defined.

First we shall show that f is a lattices morphism.

i)
$$f(0)(U) = (\lambda_0, n\lambda_0)$$
 such that:

$$\lambda_0 = \sup \{ \alpha \in J^0 / \varphi_\alpha(0) \in U \}$$

= \sup \{ \alpha \in J^0 / 0 \in U \}
= \sup \emptyset = 0,

Hence, $f(0)(U) = (0,1) = \bot$. Then we have

$$f(0) = \emptyset$$
.

 $f(1)(U) = (\lambda_1, n\lambda_1)$ such that:

$$\lambda_1 = \sup \{ \alpha \in J^0 / \varphi_\alpha(1) \in U \}$$

=
$$\sup \{ \alpha \in J^0 / 1 \in U \}$$

=
$$\sup J^0 = 1,$$

Hence, $f(1)(U) = (1,0) = \top$. Then we have

$$f(1) = X$$
.

ii) $f(x \vee y)(U) = (\lambda_{x \vee y}, n\lambda_{x \vee y})$ such that:

$$\begin{array}{lll} \lambda_{x\vee y} &=& \sup\{\alpha\in J^0 \ / \ \varphi_\alpha(x\vee y)\in U\}\\ &=& \sup\{\alpha\in J^0 \ / \ \varphi_\alpha(x)\vee\varphi_\alpha(y)\in U\}\\ &=& \sup\{\alpha\in J^0 \ / \ \varphi_\alpha(x)\in U \ \vee \varphi_\alpha(y)\in U\}\\ &=& \sup\{\alpha\in J^0 \ / \ \varphi_\alpha(x)\in U\}\vee\sup\{\alpha\in J^0 \ / \ \varphi_\alpha(y)\in U\}\\ &=& \lambda_x\vee\lambda_y, \end{array}$$

Hence,

$$f(x \vee y)(U) = (\lambda_x \vee \lambda_y, n(\lambda_x \vee \lambda_y))$$

= $(\lambda_x, n\lambda_x) \vee^* (\lambda_y, n\lambda_y)$
= $sup(f(x)(U), f(y)(U)).$

Thus

$$f(x \vee y)(U) = f(x) \cup f(y)(U).$$

and Similarly,

$$f(x \wedge y)(U) = f(x) \cap f(y)(U).$$

Now we shall prove that $f \circ \varphi_{\alpha} = N_{(\alpha, n\alpha)} \circ f$, for all $\alpha \in J^0$ and $f \circ N = \tilde{N} \circ f$.

$$f \circ \varphi_{\alpha}(x)(U) = f(\varphi_{\alpha}(x))(U)$$
$$= (\lambda_{\varphi_{\alpha}(x)}, n\lambda_{\varphi_{\alpha}(x)})$$

such that:

$$\lambda_{\varphi_{\alpha}(x)} = \sup\{\beta \in J^{0} / \varphi_{\beta}(\varphi_{\alpha}(x)) \in U\}$$
$$= \sup\{\beta \in J^{0} / \varphi_{\alpha}(x) \in U\}$$
$$= \left\{ \begin{array}{cc} 0 & if\varphi_{\alpha}(x) \notin U \\ 1 & if\varphi_{\alpha}(x) \in U \end{array} \right.$$

Therefore

$$f\circ\varphi_{\alpha}(x)=\{\begin{array}{ll}\emptyset & if\varphi_{\alpha}(x)\notin U\\ X & if\varphi_{\alpha}(x)\in U\end{array}=\sigma(\varphi_{\alpha}(x)).$$

In the other hand

$$\begin{split} N_{(\alpha,n\alpha)} \circ f(x) &= N_{(\alpha,n\alpha)}(f(x)) \\ &= \{U \in X \ / \ f(x)(U) \ge (\alpha,n\alpha)\} \\ &= \{U \in X \ / \ \alpha \in \{\beta \in J^0 \ / \ \varphi_\beta(x) \in U\}\} \\ &= \{U \in X \ / \ \varphi_\alpha(x) \in U\} \\ &= \sigma(\varphi_\alpha(x)) \end{split}$$

Hence

$$f \circ \varphi_{\alpha} = N_{(\alpha, n\alpha)} \circ f$$
, for all $\alpha \in J^0$.

2) We prove that $f\circ N=\tilde{N}\circ f.$ However, before doing this we need to show that

$$\sup\{\alpha \in J^0 / \Psi_{n\alpha}(x) \notin U\} = n \sup\{\alpha \in J^1 / \Psi_{\alpha}(x) \in U\}.$$
 (3)

Let us consider that

$$\sup\{\alpha \in J^0 / \Psi_{n\alpha}(x) \notin U\} \neq n \sup\{\alpha \in J^1 / \Psi_{\alpha}(x) \in U\},\$$

then there exists $\alpha \in \{\alpha \in J^0 \mid \Psi_{n\alpha}(x) \notin U\}$ in which $\alpha < n\lambda$ or $\alpha > n\lambda$ where $\lambda = \sup\{\alpha \in J^1 \mid \Psi_{\alpha}(x) \in U\}$. Moreover, $n\alpha \geq \lambda$ or $n\alpha \leq \lambda$ implies that $\Psi_{n\alpha}(x) \leq \Psi_{\lambda}(x)$ or $\Psi_{n\alpha}(x) \geq \Psi_{\lambda}(x)$. Hence $\Psi_{\lambda}(x) \notin U$ or $\Psi_{n\alpha}(x) \in U$, this is contradiction with the hypothesis.

From the above equality (3) we obtain for all $x \in L$,

$$f \circ N(x) = f(Nx) = (\lambda_{Nx}, n\lambda_{Nx})$$

where:

$$\lambda_{Nx} = \sup\{\alpha \in J^0 / \varphi_{\alpha}(Nx) \in U\}$$

$$= \sup\{\alpha \in J^0 / N\Psi_{n\alpha}(x) \in U\}$$

$$= \sup\{\alpha \in J^0 / \Psi_{n\alpha}(x) \notin U\}$$

$$= n \sup\{\alpha \in J^1 / \Psi_{\alpha}(x) \in U\}$$

we know by Lemma 3 that

$$\sup\{\alpha \in J^1 / \Psi_\alpha(x) \in U\} = \sup\{\alpha \in J^0 / \varphi_\alpha(x) \in U\}.$$

Pheu

$$\lambda_{Nx} = n \sup \{ \alpha \in J^0 / \varphi_{\alpha}(x) \in U \}$$
$$= n \lambda_x.$$

Therefore

$$f \circ N(x) = (n\lambda_x, \lambda_x)$$

$$= \tilde{n}(\lambda_x, n\lambda_x)$$

$$= \tilde{n}(f(x))$$

$$= \tilde{N}f(x)$$

dence

$$f \circ N = \tilde{N} \circ f$$
.

Finally, f is injective since for $x, y \in \mathcal{L}$ holds f(x) = f(y), then $\forall U \in X$, we have f(x)(U) = f(y)(U).

Hence,
$$(\lambda_x, n\lambda_x) = (\lambda_y, n\lambda_y)$$
.

Then we have $\lambda_x = \lambda_y$, i.e.,

$$\sup\{\alpha \in J^0 / \varphi_\alpha(x) \in U\} = \sup\{\alpha \in J^0 / \varphi_\alpha(y) \in U\},\$$

which yields

$$\{\alpha \in J^0 / \varphi_\alpha(x) \in U\} = \{\alpha \in J^0 / \varphi_\alpha(y) \in U\}.$$

Then, for all $\alpha \in J^0$, we have $\varphi_{\alpha}(x) \in U$ iff $\varphi_{\alpha}(y) \in U$. Consequently

$$\{U \in X / \varphi_{\alpha}(x) \in U\} = \{U \in X / \varphi_{\alpha}(y) \in U\}.$$

Applying Theorem 1 yields $\varphi_{\alpha}(x) = \varphi_{\alpha}(y)$ for all $\alpha \in J^0$, and then x = y Moisil's determination principle).

This completes the proof of Theorem 2.

4 Conclusion

In this paper, we have found under the condition that J is a complete chain, every $\theta-$ valued involutive £ukasiewicz-Moisil algebra

 $(\pounds, J, (\varphi_{\alpha})_{\alpha \in J^0}, (\Psi_{\alpha})_{\alpha \in J^1}, n, N)$ can be embedded in an algebra of L-fuzzy sets $\left(F_L(X), L, (N_{\alpha})_{\alpha \in L^{\perp}}, (N'_{\alpha})_{\alpha \in L^{\top}}, \tilde{N}, \tilde{n}\right)$ where L is a complete chain with \tilde{n} depends on J has an order type $\tilde{\theta} = \theta$. In particular, if L is the Int([0,1]) where Int([0,1]) is the set of all closed subinterval of [0,1], we can also obtain that $(\pounds, J, (\varphi_{\alpha})_{\alpha \in J^0}, (\Psi_{\alpha})_{\alpha \in J^1}, n, N)$ can be embedded in $(F_L(X), L, (N_{\alpha})_{\alpha \in L^{\perp}}, (N'_{\alpha})_{\alpha \in L^{\top}}, \tilde{N}, \tilde{n})$ and the monomorphism f can be defined by

$$f(x)(U) = [0, \lambda_x]$$

where:

$$\lambda_x = \sup \{ \alpha \in J^0 / \varphi_\alpha(x) \in U \}.$$

References

- [1] A. Amroune, Représentation des algebres de £ukasiewicz θ -valentes involutives par des structures floues, BUSEFAL (Institut de Recherche en Informatique de Toulouse), 43(1990), 5-11.
- [2] V. Boicescu, A. Filipoiu, G. Georgescu, and S. Rudeanu, £ukasiewicz Moisil algebras, North Holland, Elsevier, Amesterdam, New york, 1991.
- [3] R. Cignoli, *Algebras de Moisil*, Notas de Logica Matematica, 27, Instituto de Matematica, Universidad del Sur, Bahia Blanca, 1970.
- [4] J. Coulon and J. L. Coulon, A propos de la représentation des algebres de £ukasiewicz et des algebres Booleennes floues, Rev. Roumaine Math. Pures et Appl., 34(1989), 403-411.
- [5] J. Coulon and J. L. Coulon, Un nouveau résultat concernant la représentation d'une algebre de £ukasiewicz involutive dans l'algebre des parties floues d'une structure floue involutive, Rev. Roumaine Math. Pures et Appl., 38(1993), 319-326.
- [6] G. Deschriver and E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 133(2003), 227-235.
- [7] D. Dubois, W. Ostasiewicz and H. Prade, Fuzzy sets: history and basic notation, in D. Dubois, H. Prade (Eds.), Fundamentals of Fuzzy Sets, Kluwer Academic Publishers, Dordrecht, 2000, 80-93.
- [8] J. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.

- 9 M. De Glas, Representation of Lukasiewicz many-valued algebras, J. Math. Anal. Appl.114 (1986), 315-327.
- 10 GR. C. Moisil, Notes sur les logiques non-chrysippiennes, Ann. Sci. Univ. Jassy 27 (1941), 86-98. Reprinted in [13], 233-237.
- [11] GR. C. Moisil, £ukasiewician algebras, Preprint, competing Center, Univ. of Bucharest, 1968. Reprinted in [13], 311-324.
- [12] GR. C. Moisil, Essais sur les logiques non chrysippiennes, Editions de l'Academie, Bucarest 1972.
- [13] GR. C. Moisil, Ensembles flous et logiques plusieurs valeurs, Université de Montréal, Mai 1973.
- [44] GR. C. Moisil, Sur l'emploi des mathématiques dans les sciences de l'homme Accd. Naz. Lincei. Contributi del Centro Linceo Interdisciplinare di Sci. Mat. eloro Appl., 17(1976).
- [5] D. Ponasse, Algebres floues et algebres de £ukasiewicz, Rev. Roumaine Math. Pures et Appl., 23(1978), 103-111.
- [16] S. Rudeanu, On £ukasiewicz Moisil algebras of fuzzy sets, *Studia Logica*, 52 (1993), 95-111.
- [47] Guo-Jun Wang and Ying-Yutte, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems, 110(2000), 271-274.
- 18. L. A. Zadeh, Fuzzy sets, Inform. and Control., 8 (1965), 338-353.
- H.-J. Zimmermann, Fuzzy set theory and its applications, Kluwer Academic Publishers, Boston, Dordrecht, London, 1991.
- 1. Zedam and A. Amroune department of Mathematics, M'sila University, P.O. Box 166 Ichbilia, M'sila 28105, Algeria

lzedam@yahoo.fr

aamrounedz@yahoo.fr