Weakly Fuzzy Semi-preirresolute Functions

Yong-Fu Chen

Department of Mathematics, Wuyi University, Guangdong 529020, China

Abstract: The aim of this paper is to introduce weakly fuzzy semi-preirresolute function in fuzzy topological spaces, and study its properties and its relationship with other functions.

Key words: *Fuzzy topology; preopen set; semi-preopen set; weakly fuzzy semi-preirresolute function*

1. Introduction

In [8], the concepts of fuzzy semi-preopen set and fuzzy semi-precontinuous function were introduced in fuzzy topological spaces. In [2,3], semi-preirresolute order-homomorphism was introduced in L-fuzzy topological spaces. In this paper, we introduce a new class of function in fuzzy topological spaces, called weakly fuzzy semi-preirresolute function. It is weaker forms of fuzzy semi-preirresolute function and fuzzy preirresolute function.

2. Preliminaries

In the paper by (X, δ) or simply by X we mean a fuzzy topological space in the Chang's[5] sense, briefly fts. A° , A^{-} and A' denote the interior, closure and complement of fuzzy set A, respectively. A fuzzy set A in X is called preopen if and only if $A \leq A^{-\circ}$, and preclosed if and only if $A \geq A^{\circ-}$ [4,7]. PO(X) and PC(X) denote the family of preopen sets and family of preclosed sets of an fts X, respectively. The $A^{\Box} = \bigcup \{B: B \in PO(X), B \leq A\}$ and $A^{-} = \bigcap \{B: B \in PC(X), A \leq B\}$ are called the pre-interior and pre-closure of fuzzy set A[4], respectively. A fuzzy set A in X is called semi-preopen if and only if there is a preopen set B such that $B \leq A \leq B^{-}$, and semi-preclosed if and only if there is a preclosed set B such that $B^{\circ} \leq A \leq B$ [8]. SPO(X) and SPC(X) denote the family of semi-preopen sets and family of semi-preclosed sets of an fts X, respectively. $A_{\Box} = \bigcup \{B: B \in SPO(X), B \leq A\}$, and $A_{-} = \bigcap \{B: B \in SPC(X), A \leq B\}$ are called the semi-preinterior and semi-preclosure of A, respectively[2,3]. It is clear that every semiopen set [1] is semi-preopen and every preopen set is semi-preopen.

^{*}The work is supported by the NSF of Guangdong Provinc of China (No. 021358).

None of the converses need be true [8].

Definition 1.1[2-4,7,8]. Let $f: (X, \delta) \rightarrow (Y, \tau)$ be a function from an fts (X, δ) to another fts (Y, τ) . f is called:

(1) A fuzzy semi-preirresolute function if $f^{-1}(B) \in SPO(X)$ for each $B \in SPO(Y)$.

(2) A fuzzy preirresolute function if $f^{-1}(B) \in PO(X)$ for each $B \in PO(Y)$.

(3) A fuzzy precontinuous function if $f^{-1}(B) \in PO(X)$ for each $B \in \tau$.

(4) A fuzzy semi-precontinuous function $f^{-1}(B) \in SPO(X)$ for each $B \in \tau$.

3. Weakly Fuzzy Semi-preirresolute Functions

Definition 3.1. A function $f:(X, \delta) \rightarrow (Y, \tau)$ from an fts (X, δ) to another fts (Y, τ) is said to be weakly fuzzy semi-preirresolute if $f^{-1}(B) \in SPO(X)$ for each $B \in PO(Y)$.

Theorem 3.2. Let $f:(X, \delta) \rightarrow (Y, \tau)$ be a function. Then the following are equivalent:

(1) *f* is weakly fuzzy semi-preirresolute.
(2) *f*⁻¹(*B*) ∈*SPC*(*X*) for each *B* ∈*PC*(*Y*).
(3) *f*(*A*₀) ≤(*f*(*A*))[^] for each fuzzy set *A* in *X*.
(4) (*f*⁻¹(*B*))₀ ≤*f*⁻¹(*B*[^]) for each fuzzy set *B* in *Y*.
(5) *f*⁻¹(*B*<sup>²) ≤(*f*⁻¹(*B*))₂ for each fuzzy set *B* in *Y*.
(6) For each fuzzy point *x_a* in *X* and each *B* ∈*PO*(*Y*) with *f*(*x_a*) ∈*B*, there exists an *A* ∈*SPO*(*X*) such that *x_a* ∈*A* and *f*(*A*) ≤*B*.
</sup>

Proof. (1) \Rightarrow (2): Obvious.

(2) \Rightarrow (3): $(f(A))^{\frown} \in PC(Y)$ for each fuzzy set A in X. By (2), $f^{-1}((f(A))^{\frown}) \in SPC(X)$ and

 $A_{\frown} \leq (f^{-1} f(A))_{\frown} \leq (f^{-1}((f(A))^{\frown}))_{\frown} = f^{-1}((f(A))^{\frown}).$ Thus, $f(A_{\frown}) \leq (f(A))^{\frown}.$ (3) \Rightarrow (4): Let *B* be fuzzy set in *Y*. By (3), $f((f^{-1}(B))_{\frown}) \leq (ff^{-1}(B))^{\frown} \leq B^{\frown}.$ Thus, $(f^{-1}(B))_{\frown} \leq f^{-1}(B^{\frown}).$ (4) \Rightarrow (5): Let *B* be a fuzzy set in *Y*. By (4), $f^{-1}(B^{\frown}) \geq (f^{-1}(B^{\frown}))_{\frown} = (f^{-1}(B))^{\frown}]_{\frown}.$ From $B^{\frown} \cap = B^{\Box}$ and $(B^{\frown})_{\frown} \cap = B_{\Box}$ we have $f^{-1}(B^{\Box}) = f^{-1}(B^{\frown} \cap = (f^{-1}(B^{\frown}))^{\frown} \leq ((f^{-1}(B^{\frown})))_{\frown})^{\frown} = ((f^{-1}(B))^{\frown})_{\frown})^{\frown} = (f^{-1}(B))_{\Box}.$ (5) \Rightarrow (1): Let $B \in PO(Y)$, then $B = B^{\Box}$. By (5), $f^{-1}(B) = f^{-1}(B^{\Box}) \leq (f^{-1}(B))_{\Box} \leq f^{-1}(B).$

i.e. $f^{-1}(B) = (f^{-1}(B))_{\square}$, and $f^{-1}(B) \in SPO(X)$. Thus, *f* is weakly fuzzy semi-preirresolute. (1) \Rightarrow (6): Let *f* be weakly fuzzy semi-preirresolute, x_{\square} be a fuzzy point in *X* and *B*

 $(1) \rightarrow (0)$. Let f be weakly fuzzy semi-prefitesofute, x_a be a fuzzy point if X and $B \in PO(Y)$ such that $f(x_a) \in B$. Then $x_a \in f^{-1}(B)$. Let $A = f^{-1}(B)$, then $A \in SPO(X)$. We have $f(A) = ff^{-1}(B) \leq B$.

(6) \Rightarrow (1): Let x_a be a fuzzy point in X and $B \in PO(Y)$ such that $f(x_a) \in B$. Then $x_a \in f^{-1}(B)$. By (6), there exists an $A \in SPO(X)$ such that $x_a \in A$ and $f(A) \leq B$. Hence,

 $x_a \in A \leq f^{-1}f(A) \leq f^{-1}(B),$

and

 $x_{a} \in A = A_{\Box} \leq (f^{-1}(B))_{\Box}$.

This implies that $f^{-1}(B) \leq (f^{-1}(B))_{\square}$, i.e. $f^{-1}(B) \in SPO(X)$. Thus, f is weakly fuzzy semi-preirresolute.

Theorem 3.3. Let $f:(X, \delta) \rightarrow (Y, \tau)$ be one-to-one and onto. Then *f* a weakly fuzzy semi-preirresolute function if and only if $(f(A))^{\square} \leq f(A_{\square})$ for each fuzzy set *A* in *X*. **Proof.** Let *f* be a weakly fuzzy semi-preirresolute function and *A* be a fuzzy set in *X*. Then $(f(A))^{\square} \in PO(Y)$ and $f^{-1}((f(A))^{\square}) \in SPO(X)$. By Theorem 2.==3 and the fact that *f* is one-to-one, we have

 $f^{-1}((f(A))^{\square}) \leq (f^{-1} f(A))_{\square} = A_{\square} .$ Again, since *f* is onto, we have $(f(A))^{\square} \leq f(A_{\square})$. Conversely, let $B \in PO(Y)$, then $B = B^{\square}$. By hypothesis, $f((f^{-1}(B))_{\square}) \geq (ff^{-1}(B))^{\square} = B^{\square} = B$. This implies that

 $(f^{-1}(B)) = f^{-1}f((f^{-1}(B))) \Rightarrow f^{-1}(B).$ i.e. $f^{-1}(B) \in SPO(X)$. Thus, *f* is a weakly fuzzy semi-preirresolute function.

We can easily prove the following proposition and theorem.

Proposition 3.4. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. The following statemens are valid:

(1) If f is weakly fuzzy semi-preirresolute and g is fuzzy preirresolute, then gf is weakly fuzzy semi-preirresolute.

(2) If f is fuzzy semi-preirresolute and g is weakly fuzzy semi-preirresolute, then gf is weakly fuzzy semi-preirresolute.

(3) If f is weakly fuzzy semi-preirresolute and g is fuzzy precontinuous, then gf is fuzzy semi-precontinuous.

Theorem 3.5. Let $f: X_1 \rightarrow X_2$ and $g: X_3 \rightarrow X_4$ be weakly fuzzy semi-preirresolute. Then the product $f \times g: X_1 \times X_3 \rightarrow X_2 \times X_4$ is weakly fuzzy semi-preirresolute.

4. Relations among different functions

Clearly, the following statements are valid:

fuzzy semi-preirresoluteness

weakly fuzzy semi-preirresoluteness

fuzzy preirresoluteness

None of the converses need to be true. We give the following examples.

Example 4.1. Let $X = \{x\}$ and A, B, C be fuzzy sets in X defined as follows:

 $A(x)=0.3; \quad B(x)=0.5; \quad C(x)=0.2, \quad D(x)=0.6.$

Then $\delta = \{0, A, B, 1\}$ and $\tau = \{0, C, 1\}$ are fuzzy topologies on X. Let $f: (X, \delta) \rightarrow (X, \tau)$ be an identity mapping. Clearly, f is weakly fuzzy semi-preirresolute. We can easily get that $D \in SPO(X, \tau)$ and $f^{-1}(C) = C \notin SPO(X, \delta)$. Thus, f is not fuzzy semi-preirresolute.

Example 4.2. Let $X = \{x\}$ and A, B, C be fuzzy sets in X defined as follows:

 $A(x)=0.2; \quad B(x)=0.4; \quad C(x)=0.3.$ Then $\delta = \{0, A, 1\}$ and $\tau = \{0, B, 1\}$ are fuzzy topologies on X. Let $f: (X, \delta) \rightarrow (X, \tau)$ be an identity mapping. Clearly, f is weakly fuzzy semi-preirresolute. We can easily get that $C \in PO(X, \tau)$, but $f^{-1}(C)=C \notin PO(X, \delta)$, in fact, $C \ll C^{\circ} = A'^{\circ} = A$ in (X, δ) . Thus, f is not fuzzy preirresolute.

References

- [1]. K.K.Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity, J.Math.Anal.Appl.82(1981)14-32.
- [2]. S.Z.Bai, L-fuzzy SP-compact sets, Advances in Mathematics, 33(2003), 316-322.
- [3]. S.Z.Bai, Semi-preirresolute Order-homomorphism and Its Applications, Journal of Wuyi University, 19(2005)1-3.
- [4]. S.Z.Bai, W.W.Liang, Fuzzy non-continuous mappings and fuzzy pre-semi-separation axioms, Fuzzy Sets and Systems, 94(1998)261-268.
- [5]. C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl.24(1968) 182-190.
- [6]. Y.F.Chen, Fuzzy IPSO-irresoluteness, Busefal, 2004,89.
- [7]. A.S.Mashour, M.H.Ghanim, M.A.Fath Alla, On fuzzy non-continuous mapping, Bull.Calcutta Math.Soc. 78(1986),57-69.
- [8]. S.S.Thakur, S.Singh, On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems, 1998, 98: 383-391.
- [9]. G.J.Wang, Theory of L-fuzzy topological spaces, Press of Shaanxi Normal University, Xina, 1988.