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Abstract

An attempt is made to interpret cluster points and accumulation points in Fuzzy
Topological Spaces (fis) using the concept of a—shadings and a Characterisation of Countable
Compactness in an fis is obtained. Further some close relationships of countable a-compactness

with & metacompactness and the Fuzzy Topological Game G (DK, X) are also investigated.
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1.Introduction

The concept of fuzzy covers was introduced by Chang[1]. The notion of a
shading family was introduced in literature by Gantner and others[3] during the
investigation of compactness in fts . The shading families are a very natural generaliation

of coverings
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In particular /*- shading family of fuzzy sets is a fuzzy covering in the sense of
Chang[1].

Now most of the properties of countably compact spaces in general topology are
discussed in terms of cluster points and accumulation points. So we define a-cluster
points and a—accumulation points in fis in a language which is closely related to shading
families and in this framework we obtain a characterisation for countable compactness

in fis.

The author{5] has introduced metacompactness in fts through a-shading
families. Using this a necessary and sufficient condition for a space to be a-compact
is obtained. Again some relations of countably a—compact spaces and fuzzy topological

Game G(DK, X) introduced by the author [6] are also investigated.

2.Preliminaries

2.1 Definition[3] Let (X;7) be an fts and e [0,1] . A collection U of fuzzy sets is

called an a-shading (resp. a*- shading) of X if for each x€X, there exists gell with

gx)>a (resp. g(x)= a).

2.2 Definition[3] A subcollection of an a-shading of X which is also an a-shading

(resp. a*- shading) is called an a-subshading (resp. a*- subshading) of X.

The study of compactness in fuzzy topology was initiated by Chang[1]. Since then
different compactness notions have been defined. The following notion is due to

Gantner, Steinlage, and Warren[3].

2.3 Definition [3] A fts X is said to be a-compact (resp. a*- compact) if each o- shading
(resp. a*- shading) of X by open fuzzy sets has a finite a-subshading (resp.
o*- subshading) . Where o < [0,1].



2.4 Definition[4]. A fts X is said to be countably a-compact (resp.countably a*-
compact) if every countable a- shading (resp. a*- shading) of X by open fuzzy sets has a
finite @-sub shading (resp. a*- sub shading) . Where a € [0,1].

2.5 Definition[4].A fts X is said to be « -Lindelof (resp. a*- Lindelof ) if every o-
shading (resp. o*- shading) of X by open fuzzy sets has a countable a-subshading
(resp. ar*- subshading) . Where a € [0,1].

2.6 Definition. Let a<{[0,1]. An a-cluster point (resp. a*- cluster point ) of a set 4 in a
fts X is a fuzzy point yx, such that each fuzzy nbd Uof yx, with U (x) > a(resp. U(x)

> ) contains some fuzzy point of 4 with distinct support.

2.7 Definition. A sequence ( x:n) of fuzzy points with distinct support in a fuzzy
topological space X a-accumulates at y, (resp. a*-accumulates)at x, if and only if

for every fuzzy nbd Uof yx, with UX)> a(resp. UX) 2 a) and for every neN , there

is an m 2n such that x"1:”< Uand (A,)accumulates at A in the crisp sense in [0,/]

2.8 Theorem . The following are equivalent in a fuzzy topological Space.
(1) X is countably o - compact.
(ii)  Every fuzzy subset of X with countably infinite support has at least one « -
cluster point
(iiiy Every sequence of fuzzy points in X with distinct support has
an ¢ -accumulation point.
Proof:
() = (ii)
If possible let 4 be a fuzzy subset of X with countably infinite support and has no

a-cluster point. Then it follows that every fuzzy point xiﬂ in A has a fuzzy nbd Ui with



Ui ( xi )> o which contains no other fuzzy point of 4 with distinct support. Now

Supp(4) clearly closed and X\ Supp(4) isopen. Now consider the

collection

X x\sopw U {Ui: i€ N }.This is clearly a countable a-shading of X by open fuzzy sets

which has no finite a—subShading.

(i) = (iii)
Let ( x';n) be a sequence of fuzzy points in X with distinct support. Then there are

two possibilities.

(a) Cardinality of the support of the range set is countably infinite. Then by (ii) this

has atleast one a-cluster point say X; .Now every fuzzy nbd U of X, with Ux)>a
contains infinitely many points of the sequence other than X, . Clearly this X, is an « -
accumulation point of the sequence. For, For any ne N the set { x;'n :1<n <N} is finite
‘There fore it follows that for any nbd U of X, with U(x)>a and for any ne N, there is

anm 2nsuch thaty, <U and (4,)accumulatesat 4.

(b) If cardinality of range set is finite , then there should be some fuzzy point X

with x, = X, for infinitely many ne N . Then clearly this X; is an a-accumulation

point.

(i) = ()

Let X be not countably a-compact . Let U={U, U, Us... ..} be a countable a-
shading of X by open fuzzy sets which has no finitea- subshading. Therefore {U, U, Us;...
Uy} cannot a-shade X for any finite . Therefore corresponding to each finite £ we can

find an x'eX such that Uj-(xk)> a for some j>k and Uy <a forl <i<k



Let U,(x") = r, where 7, €(a,1]. Now the sequence " /has no a-accumulation point.
For, if possible let x,be an a-accumulation point of (Jf,,k ).Now since U is an a-shading
of X, we can find a minimum /eN such that U(x) > & and Ufx) < a for all 1<i<l. Now
take n=I/+1 and consider the nbd Uj of x. Then for any m 2 n we have X" an > Uy For
corresponding to any m, we can find some U; such that Uj; (™> a for some j>m.and
U(x™) <afor 1< i sm. Here m >n = I+1. Therefore /<m and it follows that U(x™) <a

But 7,, €(a,1]. Thus x™,, < U; which is a contridiction. This completes the proof.

3. Irreducible and Removable Shading Families.

3.1 Definition. Let /be an a-shading of a fts X. We say that ¥ is irreducible if when a

single member is removed from # then ¥ is no longer an a-shading of X.

3.2 Definition. Let & be an a--shading of a fis X. A family F c ¥is removable if when

we remove the collection F from ¥, then also # is an a-shading of X.

3.3 Definitions [4] A family {a, : s€ S} of fuzzy sets in a fuzzy topological space (X,T')
is said to be locally finite if for each x in X there exists an open fuzzy set g of X with
g(x) =1 such that a, < I-g holds for all but atmost finitely many s in S.

3.4 Definition. [4] A family {a, :se S} of fuzzy setsin a fts (X,T) is said to be point
finite if for each x in X, a; (x)=0 for all but atmost finitely many s in S. Or equivalently as

ay(x) >0 for atmost finitely many s in S.
3.5 Definition [4] Let (X,7) be an fts and ae [0,1) . Let / and ¥'be any two a-shadings

(respa*-shading) of X. Then ¥ is a refinement of ¥ (# < ¥ if for each gel there is an
he¥such that g <h.

3.6 Definition [4] A fts (X,7) is said to be a-paracompact (resp. a *- paracompact) if



each o-shading (resp. a*- shading) of X by open fuzzy sets has a locally finite a-shading
(resp. a*-shading) refinement by open fuzzy sets. Where a € [0,1].

3.7 Definition[5]. A fuzzy topological space (X, T) is said to be a-metacompact (resp.
o* -metacompact) if each a-shading (resp. a*- shading) of X by open fuzzy sets has a
point finite a-shading.(resp. a*- shading) refinement by open fuzzy sets. Where a &
[0,1].

3.8 Lemma. Let ( X7 ) be a fts. Then for every point finite a-shading of X, there is an

irreducible a-subshading of X.

Proof:

Let  be a point finite a-shading of X . Consider the set # of all removable
subcollections of & . Partial order # by inclusion. For any chain {R,} in #, there is an
upper bound say R= U, R, . Now clearly Ref . Otherwise there would be some xeX
such that R contains finitely many Uy.Us,....U, with Uyx)> a for I1<i<n. Since {R,} isa
chain all the U;’s belong to some R, say R,. Which will contradict R,-ef . Hence by

Zorn’s lemma , there is a maximal R,efand so ¥ \ R, is irreducible.

3.9 Theorem. A fts X is a-compact if and only if it is both countably a-compact and a-

metacompact.

Proof:

Necessary follows clearly. For sufficiency part , Let X be countably a-compact
and a-metacompact. Let U= {u,: a€A} be any a-shading of X by open fuzzy sets . Now
since X is a-metacompact it follows that U has a point finite a-shading refinement by
open fuzzy sets , say {vg: BeB} . Now by lemma 3.8 {vs: SeB} has an irreducible
subshading say {v,: yeG } . Now this should be finite. For since {v,: yeG } is

irreducible , corresponding to each v, we can find an x”e X with v(x)>a and vx) <a



for every k=y. Now let v(x)=n, where 7, € (a,1]. If {v,: yeG } were infinite , then{
x"y, : yeG} would be an infinite fuzzy subset with no a-cluster points. Contradicting X

is countably a-compact.

Now corresponding to each v, choose some ) > v,.This is possible since {v,
yeG } is a refinement of {u,: aed} . Thus we can reduce {u,: aed} to a finite

subfamily. Thus X is a-compact and the proof is complete.

As an immediate consequence of Theorem 3.9 and from the Definition of

a-Lindelof spaces we get the following corollary

3.10 Corollélry. Countable o-compactness is equivalent to compactness in -

paracompact spaces and in arbitrary a-Lindelof spaces.

4.Countably a-compact spaces and the Fuzzy topological Game
G (DK,X)

As a generalisation of the Topological Game G(K, X)introduced by Telgarsk: 0]
the author [6] introduced the Fuzzy Topological Game G'(K,X) . Where K is a non empty
family of fuzzy topological spaces, where all spaces are assumed to be 7; That is all
fuzzy singletons are fuzzy closed . I denote the family of all fuzzy closed subsets of X.
Also Xe K implies I < K. DK denote the class of all fuzzy topological spaces
which have a discrete fuzzy closed a-shading by members of K.

4.1 Definition[4].A family {a, : se S} of fuzzy sets in a fuzzy topological space ( X,T')
is said to be discrete if for each x in X , there exists an open fuzzy set g of X with

g(x) =1 such that a, < I-g holds for all but atmost one s in S.

4. 2 Definition [6] Let K be a class of fuzzy topological spaces and let X € K. Then the
fuzzy topological game G (K, X) is defined as follows. There are two players Player / and



Player 17 . They alternatively choose consecutive terms of the sequence(E},F}, Ep ... Jof
fuzzy subsets of X . When each player chooses his term he knows K, X and their
previous choices. A sequence (E,F;,E5F),...) is a play for G (K. X) if it satisfies the

following conditions for each n 2.
(1) E,isachoice of Player/
(2) F,isachoice of Player /]
B) E, el AK
4) F,el
(5) E, v F, <F,; whereFp=X

6) E.nF, =0
Player / wins the play if Inf F, = 0. Otherwise Player // wins the Game.

nzl

4.3 Definition [6] A finite sequence (E,F,E5Fo,........ EnFy,) is admissible if it satisfies

conditions (1) -- (6) for each n <m.
4.4 Definition [6] Let S’ be a crisp function defined as follows

STULY 2 ENK
Let S;={x} nel
S,={Fe I :(S'(X),F)is admissible for G (K, X) }. Continuing like this inductively we get
S={(F L FyF3...... Fn) . (E,FLEF,,.. .E, F,)is admissible for G‘(K,X) where Fyp=X and
Ei=S (E;,F1E5F....F.)for each i <n}. Then the restriction S of S ™ to Uy S, is
called a fuzzy strategy for Player I in GKX).



4.5 Definition [6] If Player I wins every play (E,F L, EaFa,..EpFy...... ) such that
E, =S(FLEF ... ,F.1) , then we say that S is a fuzzy winning strategy.

4.6 Definition [6]S: I —™%» FNK is called a fuzzy stationery strategy for

Player L in G (K, X) if S(F) < F for each Fe ' .We say that S is a fuzzy stationary
winning strategy if he wins every play ( S(X),F,S(F).F>...).

From definitions above, we get

4.7 Result [6] A function S: ¥ —2—» F K is a fuzzy stationary winning strategy
if and only if it satisfies
(i)ForeachFe [, S(F)<F
(i) If {F,;: n> 1} satisfies S(X) A F;=0and S(F,) A F,.;=0 foreachn 21 then
InfF, =0,

nzl

4.8 Theorem[6] Player I has a fuzzy winning strategy in G(KX) ifand only if he has a
fuzzy stationary winning strategy in it.

4.9 Definition. A collection {4, : il} of subsets of a fuzzy topological space X is said to

be closure preserving if foreach J< I, cl[V4;.ieJ] = Vs cl[4]

4.10 Theorem. If C is a closure preserving a-shading of a fts X by fuzzy closed and
countably a-compact sets and if K is a class of fts with C ¢ K, then Player | has a fuzzy
stationary winning strategy in G (DK, X)

Proof:
Corresponding to each fuzzy closed set /' in X, consider the collection{CAF:

Ce C} and let J (F) be the maximal disjoint subcollection of this. This is possible since
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C is an a-shading of X. Clearly &F) is closure preserving and disjoint and hence it is
discrete. Now define S: F —2>»> [FN DK by Fi>VvHF). Wewill showthatSisa

fuzzy stationary winning strategy for Player I in G'(DKX).

Let {F, : neN} be a decreasing (F;>F,>F;.... ) sequence with S(X) A F;= 0 and
S(F,) AF,.; = 0. If possible let if Inf F, # 0. Then there exists Cp eC such that Cy has

nzl
non empty meet with each of F,. Now Cy A F, glfF,) for each n > 1. For, If
CoA F, €D (F,) for some n,then
ConFp=(ConE ) Fpiy

<[ VIF)] A Fpss
=S(F) A Foes
= (. This is a contradiction . Therefore Cy A F,, ¢ XF,) for each foreveryn21.

Fix some n >1 . I¥F,) is maximal and disjoint. Also Cyp A F,, ¢ )fF,). Therefore
we can take some C, eC such that C, A F, e B(F,) and (C,A Cp) A F# 0. Foreachn 21,
take some x"eX such that [(Co A F,) A G, (") >a where ae(0,1]: Let
Min {Cg(x),F,,(x),C,,(x)'= A, Now clearly we have[S(F,)](x")>c.. AlsoS(F)A Fyep=0.
Therefore F,.;(x")=0. Now consider the sequence (x"y,) in Cp. Now C is countably
a-compact. There fore it has an a-cluster point say x; in C,.This follows from

Theorem?2.8.

Now we have Inf F,(x) > a For, if F,(x)< a for some # , then we can choose

nx1
some m2n with A, >F,(") . But F,<F, Therefore Fp(x")<F,("). Now A, < Fp(x") <
F,(x").There fore 4, <ZF,(x").Thisisa contradiction.

Now claim Sup ; C, (x)=0. For, let Cy(x)>0 for some n. Now Cy A F, € OF,)

and F,. (x)> a.Then (Co,AFuAF 2 )(X)< (S(Fn) A Fyi)(x)

= (. There fore C,(x) =0. This is a contradiction.
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Since C is closure preserving , we have cl{x", : n2I }(x) > a. Also ¢l {x"yn : n21} < cl

Sup ~C,= Sup ;C, . There fore Sup ;C,(x)> a , where a €(0,1]. This is a

n21

contradiction to Sup -C,(x) = 0. This completes the proof.

nz1
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