Countable α -Compactness, α -Metacompactness and the Fuzzy Topological Game G`(DK,X)

Sunil Jacob John

Department of Mathematics

National Institute of Technology Calicut

Calicut- 673 601, Kerala, INDIA

e-mail: sunil@nitc.ac.in

Abstract

An attempt is made to interpret cluster points and accumulation points in Fuzzy Topological Spaces (fts) using the concept of α -shadings and a Characterisation of Countable Compactness in an fts is obtained. Further some close relationships of countable α -compactness with α - metacompactness and the Fuzzy Topological Game G'(DK, X) are also investigated.

Keywords:- Fuzzy Topology, Metacompactness, Countable Compactness, Fuzzy Topological Game

1.Introduction

The concept of fuzzy covers was introduced by Chang[1]. The notion of a shading family was introduced in literature by Gantner and others[3] during the investigation of compactness in fts. The shading families are a very natural generaliation of coverings

In particular 1*- shading family of fuzzy sets is a fuzzy covering in the sense of Chang[1].

Now most of the properties of countably compact spaces in general topology are discussed in terms of cluster points and accumulation points. So we define α -cluster points and α -accumulation points in fts in a language which is closely related to shading families and in this framework we obtain a characterisation for countable compactness in fts.

The author[5] has introduced metacompactness in fts through α -shading families. Using this a necessary and sufficient condition for a space to be α -compact is obtained. Again some relations of countably α -compact spaces and fuzzy topological Game G'(DK, X) introduced by the author [6] are also investigated.

2.Preliminaries

- **2.1 Definition**[3] Let (X,T) be an fts and $\alpha \in [0,1]$. A collection \mathcal{U} of fuzzy sets is called an α -shading (resp. α^* shading) of X if for each $x \in X$, there exists $g \in \mathcal{U}$ with $g(x) > \alpha$ (resp. $g(x) \ge \alpha$).
- **2.2 Definition**[3] A subcollection of an α -shading of X which is also an α -shading (resp. α^* shading) is called an α -subshading (resp. α^* subshading) of X.

The study of compactness in fuzzy topology was initiated by Chang[1]. Since then different compactness notions have been defined. The following notion is due to Gantner, Steinlage, and Warren[3].

2.3 Definition [3] A fts X is said to be α -compact (resp. α^* -compact) if each α -shading (resp. α^* -shading) of X by open fuzzy sets has a finite α -subshading (resp. α^* -subshading). Where $\alpha \in [0,1]$.

- **2.4 Definition**[4]. A fts X is said to be countably α -compact (resp. countably α^* -compact) if every countable α -shading (resp. α^* -shading) of X by open fuzzy sets has a finite α -sub shading (resp. α^* -sub shading). Where $\alpha \in [0,1]$.
- **2.5 Definition**[4].A fts X is said to be α -Lindelof (resp. α^* Lindelof) if every α -shading (resp. α^* shading) of X by open fuzzy sets has a countable α -subshading (resp. α^* subshading). Where $\alpha \in [0,1]$.
- **2.6 Definition**. Let $\alpha \in [0,1]$. An α -cluster point (resp. α^* cluster point) of a set A in a fts X is a fuzzy point χ_{λ} such that each fuzzy nbd U of χ_{λ} with $U(x) > \alpha$ (resp. $U(x) \ge \alpha$) contains some fuzzy point of A with distinct support.
- **2.7 Definition.** A sequence $(\chi_{\lambda n}^n)$ of fuzzy points with distinct support in a fuzzy topological space X α -accumulates at χ_{λ} (resp. α^* -accumulates) at χ_{λ} if and only if for every fuzzy nbd U of χ_{λ} with $U(x) > \alpha$ (resp. $U(x) \ge \alpha$) and for every $n \in N$, there is an $m \ge n$ such that $\chi_{\lambda m}^m < U$ and (λ_n) accumulates at λ in the crisp sense in [0,1]
- 2.8 Theorem . The following are equivalent in a fuzzy topological Space.
 - (i) X is countably α compact.
 - (ii) Every fuzzy subset of X with countably infinite support has at least one α cluster point
 - (iii) Every sequence of fuzzy points in X with distinct support has an α -accumulation point.

Proof:

 $(i) \Rightarrow (ii)$

If possible let A be a fuzzy subset of X with countably infinite support and has no α -cluster point. Then it follows that every fuzzy point $\chi_{\lambda i}^{i}$ in A has a fuzzy nbd Ui with

 $Ui(\chi^i) > \alpha$ which contains no other fuzzy point of A with distinct support. Now Supp(A) clearly closed and $X \setminus Supp(A)$ is open. Now consider the collection

 $\chi_{X \setminus Supp(A)} \cup \{U_i : i \in N\}$. This is clearly a countable α -shading of X by open fuzzy sets which has no finite α -subshading.

$(ii) \Rightarrow (iii)$

Let $(\chi_{\lambda n}^n)$ be a sequence of fuzzy points in X with distinct support. Then there are two possibilities.

- Cardinality of the support of the range set is countably infinite. Then by (ii) this has at least one α -cluster point say x_{λ} . Now every fuzzy nbd U of x_{λ} with $U(x) > \alpha$ contains infinitely many points of the sequence other than x_{λ} . Clearly this x_{λ} is an α -accumulation point of the sequence. For, For any $n \in N$ the set $\{x_{\lambda n}^n : 1 \le n \le N\}$ is finite. There fore it follows that for any nbd U of x_{λ} with $U(x) > \alpha$ and for any $n \in N$, there is an $m \ge n$ such that $x_{\lambda m}^m < U$ and (λ_n) accumulates at λ .
- (b) If cardinality of range set is finite, then there should be some fuzzy point X_{λ} with $\chi_{\lambda n}^{n} = \chi_{\lambda}$ for infinitely many $n \in N$. Then clearly this χ_{λ} is an α -accumulation point.

$(iii) \Rightarrow (i)$

Let X be not countably α -compact. Let $U = \{U_1, U_2, U_3, \dots \}$ be a countable α -shading of X by open fuzzy sets which has no finite α -subshading. Therefore $\{U_1, U_2, U_3, \dots U_k\}$ cannot α -shade X for any finite k. Therefore corresponding to each finite k we can find an $x^k \in X$ such that $U_j(x^k) > \alpha$ for some j > k and $U_i(x^k) \le \alpha$ for $1 \le i \le k$.

Let $U_j(x^k) = \eta_k$ where $\eta_k \in (\alpha, 1]$. Now the sequence $(x^k_{\eta k})$ has no α -accumulation point. For, if possible let x_{η} be an α -accumulation point of $(x^k_{\eta k})$. Now since U is an α -shading of X, we can find a minimum $l \in N$ such that $U_l(x) > \alpha$ and $U_i(x) \le \alpha$ for all $1 \le i \le l$. Now take n = l + 1 and consider the nbd U_l of x. Then for any $m \ge n$ we have $x^m_{\eta m} > U_l$. For corresponding to any m, we can find some U_j such that $U_j(x^m) > \alpha$ for some j > m and $U_i(x^m) \le \alpha$ for $1 \le i \le m$. Here $m \ge n = l + 1$. Therefore l < m and it follows that $U_l(x^m) \le \alpha$. But $\eta_m \in (\alpha, 1]$. Thus $x^m_{\eta m} < U_l$ which is a contridiction. This completes the proof.

3. Irreducible and Removable Shading Families.

- 3.1 Definition. Let U be an α -shading of a fts X. We say that U is irreducible if when a single member is removed from U then U is no longer an α -shading of X.
- **3.2 Definition.** Let \mathcal{U} be an α -shading of a fts X. A family $\mathbf{F} \subset \mathcal{U}$ is removable if when we remove the collection \mathbf{F} from \mathcal{U} , then also \mathcal{U} is an α -shading of X.
- **3.3 Definitions** [4] A family $\{a_s : s \in S\}$ of fuzzy sets in a fuzzy topological space (X,T) is said to be locally finite if for each x in X there exists an open fuzzy set g of X with g(x) = 1 such that $a_s \le 1-g$ holds for all but at most finitely many s in S.
- **3.4 Definition.** [4] A family $\{a_s : s \in S\}$ of fuzzy sets in a fts (X,T) is said to be point finite if for each x in X, $a_s(x)=0$ for all but atmost finitely many s in S. Or equivalently as $a_s(x)>0$ for atmost finitely many s in S.
- **3.5 Definition** [4] Let (X,T) be an fts and $\alpha \in [0,1)$. Let U and V be any two α -shadings $(\text{resp}\alpha^*\text{-shading})$ of X. Then U is a refinement of V(U < V) if for each $g \in U$ there is an $h \in V$ such that $g \le h$.
- 3.6 Definition [4] A fts (X,T) is said to be α -paracompact (resp. α *- paracompact) if

each α -shading (resp. α^* -shading) of X by open fuzzy sets has a locally finite α -shading (resp. α^* -shading) refinement by open fuzzy sets. Where $\alpha \in [0,1]$.

3.7 **Definition**[5]. A fuzzy topological space (X, T) is said to be α -metacompact (resp. α^* -metacompact) if each α -shading (resp. α^* - shading) of X by open fuzzy sets has a point finite α -shading.(resp. α^* - shading) refinement by open fuzzy sets. Where $\alpha \in [0,1]$.

3.8 Lemma. Let (X,T) be a fts. Then for every point finite α -shading of X, there is an irreducible α -subshading of X.

Proof:

Let U be a point finite α -shading of X. Consider the set \mathbb{R} of all removable subcollections of U. Partial order \mathbb{R} by inclusion. For any chain $\{R_{\mu}\}$ in \mathbb{R} , there is an upper bound say $R = \bigcup_{\mu} R_{\mu}$. Now clearly $R \in \mathbb{R}$. Otherwise there would be some $x \in X$ such that R contains finitely many $U_1.U_2,....U_n$ with $U_i(x) > \alpha$ for $1 \le i \le n$. Since $\{R_{\mu}\}$ is a chain all the U_i 's belong to some R_{μ} say R_{μ} . Which will contradict $R_{\mu} \in \mathbb{R}$. Hence by Zorn's lemma, there is a maximal $R_o \in \mathbb{R}$ and so $U \setminus R_o$ is irreducible.

3.9 Theorem. A fts X is α -compact if and only if it is both countably α -compact and α -metacompact.

Proof:

Necessary follows clearly. For sufficiency part, Let X be countably α -compact and α -metacompact. Let $U = \{u_\alpha : \alpha \in A\}$ be any α -shading of X by open fuzzy sets. Now since X is α -metacompact it follows that U has a point finite α -shading refinement by open fuzzy sets, say $\{v_\beta : \beta \in B\}$. Now by lemma 3.8 $\{v_\beta : \beta \in B\}$ has an irreducible subshading say $\{v_\gamma : \gamma \in G\}$. Now this should be finite. For since $\{v_\gamma : \gamma \in G\}$ is irreducible, corresponding to each v_γ we can find an $x^\gamma \in X$ with $v_\gamma(x^\gamma) > \alpha$ and $v_k(x^\gamma) \le \alpha$

for every $k \neq \gamma$. Now let $v_{\gamma}(x^{\gamma}) = \eta_{\gamma}$ where $\eta_{\gamma} \in (\alpha, 1]$. If $\{v_{\gamma}: \gamma \in G\}$ were infinite, then $\{x^{\gamma}_{\eta\gamma}: \gamma \in G\}$ would be an infinite fuzzy subset with no α -cluster points. Contradicting X is countably α -compact.

Now corresponding to each v_{γ} choose some $u_{k(\gamma)} > v_{\gamma}$. This is possible since $\{v_{\gamma}: \gamma \in G\}$ is a refinement of $\{u_{\alpha}: \alpha \in A\}$. Thus we can reduce $\{u_{\alpha}: \alpha \in A\}$ to a finite subfamily. Thus X is α -compact and the proof is complete.

As an immediate consequence of Theorem 3.9 and from the Definition of α -Lindelof spaces we get the following corollary

3.10 Corollary. Countable α -compactness is equivalent to compactness in α -paracompact spaces and in arbitrary α -Lindelof spaces.

4. Countably α -compact spaces and the Fuzzy topological Game G`(DK,X)

As a generalisation of the Topological Game G(K,X) introduced by Telgarsky $[\sigma]$ the author [6] introduced the Fuzzy Topological Game G'(K,X). Where K is a non empty family of fuzzy topological spaces, where all spaces are assumed to be T_L . That is all fuzzy singletons are fuzzy closed. \underline{I}^{κ} denote the family of all fuzzy closed subsets of X. Also $X \in K$ implies $\underline{I}^{\kappa} \subseteq K$. DK denote the class of all fuzzy topological spaces which have a discrete fuzzy closed α -shading by members of K.

- **4.1 Definition**[4]. A family $\{a_s : s \in S\}$ of fuzzy sets in a fuzzy topological space (X, T) is said to be discrete if for each x in X, there exists an open fuzzy set g of X with g(x) = 1 such that $a_s \le 1$ -g holds for all but at most one s in S.
- **4. 2 Definition** [6] Let K be a class of fuzzy topological spaces and let $X \in K$. Then the fuzzy topological game G'(K,X) is defined as follows. There are two players Player I and

Player II. They alternatively choose consecutive terms of the sequence $(E_1, F_1, E_2, F_2, ...)$ of fuzzy subsets of X. When each player chooses his term he knows K, X and their previous choices. A sequence $(E_1, F_1, E_2, F_2, ...)$ is a play for G(K, X) if it satisfies the following conditions for each $n \ge I$.

- (1) E_n is a choice of Player I
- (2) F_n is a choice of Player II
- (3) $E_{\mathbf{n}} \in \underline{f}^{\mathbf{x}} \wedge \mathbf{K}$
- (4) $F_n \in \underline{f}^x$
- (5) $E_n \vee F_n < F_{n-1}$ where $F_0 = X$
- (6) $E_n \wedge F_n = 0$

Player I wins the play if $\underset{n\geq 1}{Inf} F_n = 0$. Otherwise Player II wins the Game.

- **4.3 Definition** [6] A finite sequence $(E_1, F_1, E_2, F_2, \dots, E_m, F_m)$ is admissible if it satisfies conditions (1) -- (6) for each $n \le m$.
- 4.4 Definition [6] Let S' be a crisp function defined as follows

$$S': \bigcup \left(\underline{f}^{x}\right)^{n} \xrightarrow{\text{into}} \underline{f}^{x} \cap \underline{K}$$

Let $S_1 = \{x\}$

 $S_2 = \{F \in \underline{I}^{\kappa} : (S^{\kappa}(X), F) \text{ is admissible for } G^{\kappa}(K, X) \}$. Continuing like this inductively we get $S_n = \{(F_1, F_2, F_3, \dots, F_n) : (E_1, F_1, E_2, F_2, \dots, E_n, F_n) \text{ is admissible for } G^{\kappa}(K, X) \text{ where } F_0 = X \text{ and } E_i = S^{\kappa}(E_1, F_1, E_2, F_2, \dots, F_{i-1}) \text{ for each } i \leq n\}$. Then the restriction S of S^{κ} to $\bigcup_{n \geq 1} S_n$ is called a fuzzy strategy for Player I in $G^{\kappa}(K, X)$.

4.5 Definition [6] If Player I wins every play $(E_1, F_1, E_2, F_2, ... E_m, F_{n,...})$ such that $E_n = S(F_1, F_2, ..., F_{n-1})$, then we say that S is a fuzzy winning strategy.

4.6 Definition [6] $S: \underline{f}^{\kappa} \xrightarrow{\text{into}} \underline{f}^{\kappa} \cap K$ is called a fuzzy stationery strategy for Player I in G(K,X) if S(F) < F for each $F \in \underline{f}^{\kappa}$. We say that S is a fuzzy stationary winning strategy if he wins every play $(S(X), F_1, S(F_1), F_2, \dots)$.

From definitions above, we get

- **4.7 Result** [6] A function S: $\underline{I}^x \xrightarrow{\text{into}} \underline{I}^x \cap K$ is a fuzzy stationary winning strategy if and only if it satisfies
- (i) For each $F \in \underline{I}^x$, S(F) < F
- (ii) If $\{F_n: n \ge 1\}$ satisfies $S(X) \land F_1 = 0$ and $S(F_n) \land F_{n+1} = 0$ for each $n \ge 1$ then $\inf_{n \ge 1} F_n = 0 .$
- **4.8 Theorem**[6] Player I has a fuzzy winning strategy in G(K,X) if and only if he has a fuzzy stationary winning strategy in it.
- **4.9 Definition**. A collection $\{A_i: i \in I\}$ of subsets of a fuzzy topological space X is said to be closure preserving if for each $J \subseteq I$, cl $[\lor A_i: i \in J] = \lor_{i \in J}$ cl $[A_i]$
- **4.10 Theorem.** If C is a closure preserving α -shading of a fts X by fuzzy closed and countably α -compact sets and if K is a class of fts with $C \subset K$, then Player I has a fuzzy stationary winning strategy in G'(DK,X)

Proof:

Corresponding to each fuzzy closed set F in X, consider the collection $\{C \land F: C \in C\}$ and let D(F) be the maximal disjoint subcollection of this. This is possible since

C is an α -shading of X. Clearly D(F) is closure preserving and disjoint and hence it is discrete. Now define $S: \underline{f}^{\kappa} \xrightarrow{\text{int}o} \underline{f}^{\kappa} \cap DK$ by $F \mapsto \vee D(F)$. We will show that S is a fuzzy stationary winning strategy for Player I in G'(DK,X).

Let $\{F_n: n \in N\}$ be a decreasing $(F_1 > F_2 > F_3)$ sequence with $S(X) \land F_1 = 0$ and $S(F_n) \land F_{n+1} = 0$. If possible let if $\inf_{n \ge 1} F_n \ne 0$. Then there exists $C_0 \in C$ such that C_0 has non empty meet with each of F_n . Now $C_0 \land F_n \notin D(F_n)$ for each $n \ge 1$. For, If $C_0 \land F_n \in D(F_n)$ for some n, then

$$C_0 \wedge F_n = (C_0 \wedge F_n) \wedge F_{n+1}$$

$$< [\vee D(F_n)] \wedge F_{n+1}$$

$$= S(F_n) \wedge F_{n+1}$$

= 0. This is a contradiction. Therefore $C_0 \wedge F_n \notin D(F_n)$ for each for every $n \ge 1$.

Fix some $n \ge 1$. $D(F_n)$ is maximal and disjoint. Also $C_0 \wedge F_n \notin D(F_n)$. Therefore we can take some $C_n \in C$ such that $C_n \wedge F_n \in D(F_n)$ and $(C_n \wedge C_0) \wedge F_n \ne 0$. For each $n \ge 1$, take some $x^n \in X$ such that $[(C_0 \wedge F_n) \wedge C_n] (x^n) > \alpha$ where $\alpha \in (0,1]$. Let Min $\{C_0(x), F_n(x), C_n(x) = \lambda_n$. Now clearly we have $[S(F_n)](x^n) > \alpha$. Also $S(F_n) \wedge F_{n+1} = 0$. Therefore $F_{n+1}(x^n) = 0$. Now consider the sequence (x^n) in C_0 . Now C_0 is countably α -compact. There fore it has an α -cluster point say x_λ in C_0 . This follows from Theorem 2.8.

Now we have $\inf_{n\geq 1} F_n(x) > \alpha$. For, if $F_n(x) \leq \alpha$ for some n, then we can choose some $m\geq n$ with $\lambda_m > F_n(x^m)$. But $F_m < F_n$. Therefore $F_m(x^m) < F_n(x^m)$. Now $\lambda_m \leq F_m(x^m) < F_n(x^m)$. There fore $\lambda_m < F_n(x^m)$. This is a contradiction.

Now claim $\sup_{n\geq 1} C_n(x) = 0$. For , let $C_n(x) > 0$ for some n. Now $C_0 \wedge F_n \in D(F_n)$ and $F_{n+1}(x) > \alpha$. Then $(C_n \wedge F_n \wedge F_{n+1})(x) < (S(F_n) \wedge F_{n+1})(x)$ $= 0. \text{ There fore } C_n(x) = 0. \text{ This is a contradiction.}$

Since C is closure preserving, we have $cl\{x^n_{\lambda n}: n \ge l\}(x) > \alpha$. Also $cl\{x^n_{\lambda n}: n \ge l\} < cl Sup_{n \ge \overline{l}} C_n = Sup_{n \ge \overline{l}} C_n$. There fore $Sup_{n \ge \overline{l}} C_n(x) > \alpha$, where $\alpha \in (0,1]$. This is a contradiction to $Sup_{n \ge \overline{l}} C_n(x) = 0$. This completes the proof.

REFERENCES

- [1] C.L.Chang, Fuzzy Topological Spaces J.Math. Anal. Appl. 24; 182-190 (1968).
- [2] F.Dugundji, Topology, Allyn&Bacon(1996).
- [3] T.E GANTNER R.C STEINLAGE and R.H WRREN, Compactness in Fuzzy Topological Spaces *J.Math. Anal. Appl.* 62(1978), 547-562.
- [4] S.R. Malghan, S.S. Benchallii, On Fuzzy Topological Spaces, *Glasnik Mathematicki* 16 (36), 1981, 313-325.
- [5] Sunil Jacob John, Fuzzy Topological Games and Related Topics, PhD Thesis, Cochin University of Science and Technology (2000).
- [6] Sunil Jacob John, Fuzzy Topological Games I, Far East J. Math. Sci. Special Vol.(1999) Part III (Geometry and Topology), 361-371.
- [7] Sunil Jacob John, Fuzzy Topological Games II, Far East J. Math. Sci.10(2)(2003), 209 221.
- [8] Sunil Jacob John, Fuzzy Topological Games, a-Metacompactness, and a-Perfect Maps, *Glasnik Mathematicki*, Vol.35 (55) (2000), 261-270.
- [9] Sunil Jacob John, Fuzzy P-Spaces Games and Metacompactness, *Glasnik Mathematick*i Vol.38,No.1(2003), 157-165
- [10] R.TELGARSKY, Spaces Defined by Topological Games, *Fund. Math.*88(1975) 193-223.
- [11] Y.Yajima, Topological Games and Applications in Topics in General Topology, edited by K.Morita and J.Nagata, Elsevier Science Pub. pp 524-562.
