WEAK AND STRONG FORMS OF α -IRRESOLUTENESS IN FUZZY TOPOLOGICAL SPACES*

Ratnesh SARAF and Govindappa NAVALAGI

ABSTRACT : In this paper, we introduce and study three new classes of functions using fuzzy $g\alpha$ -closed sets called ap-F α -irresolute functions, ap-F α -closed functions and contra fuzzy α -irresolute functions. The connections between these functions and other existing fuzzy topological functions are studied. Also, we obtain the characterizations of fuzzy $\alpha - T_{1/2}$ - spaces via these defined functions.

1 INTRODUCTION

The concept of fuzzy sets was introduced by Prof. L.A. Zadeh in his classical paper[13]. After the discovery of the fuzzy subsets, much attention has been paid to generalize the basic concepts of classical topology in fuzzy setting and thus a modern theory of fuzzy topology is developed. The notion of fuzzy subsets naturally plays a significant role in the study of fuzzy topology which was introduced by C.L. Chang [3] in 1968. In 1992 M.K.Singal et al [?] introduced and investigated the notions of fuzzy α -open and fuzzy α -closed sets. Since the advent of these notions, several research papers with interesting results in different respects came to existence ([4, ?, 7, 9, 10, 11, 12]). Recently, in 2000 Saraf and Mishra [5] have generalized the concept of fuzzy α - closed sets to fuzzy generalized α -closed sets. In this paper we shall introduce a new class of generalizations of fuzzy α -irresoluteness, called ap-fuzzy α -irresoluteness by using fuzzy $g\alpha$ -closed sets and study some of their basic properties. This definition enables us to obtain conditions under which functions and inverse functions preserve fuzzy $g\alpha$ -closed sets. Alos in this paper, we present a new generalization of fuzzy α -irresoluteness called contra fuzzy α -irresolute. We define contra fuzzy α -irresolute function as the inverse image of each fuzzy α open set is fuzzy α -closed set. The class of contra fuzzy α -irresolute functions is a stronger form than that of classes of ap-fuzzy α -irresolute and ap-fuzzy α -closed functions.

^{*2000} Math.Subject Classification:54A40,

Key Words and Phrases: Fuzzy topological spaces, Fg α -closed sets, fuzzy α -open sets, fuzzy α -closed functions, fuzzy α -irresolute functions.

2 PRELIMINARIES

Throughout this paper by (X, τ) or simply by X we mean a fuzzy topological space (in brief, fts) due to Chang[3].Let A be a fuzzy subset of X.The interior, closure and the complement of a fuzzy set A in X are denoted by Int(A), Cl(A) and 1 - A respectively.

DEFINITION 2.1: A fuzzy set A in a fts X is called,

- (1) Fuzzy preopen[2] if $A \leq Int(Cl(A))$.
- (2) Fuzzy preclosed [2] if $Cl(Int(A)) \leq A$.
- (3) Fuzzy semiopen[1] if $A \leq Cl(Int(A))$.
- (4) Fuzzy semiclosed [1] if $Int(Cl(A)) \leq A$.
- (5) Fuzzy regular open [1] if A = Int(Cl(A)).
- (6) Fuzzy regular closed [1] if A = Cl(Int(A)).
- (7) Fuzzy α -open[8] if $A \leq Int(Cl(Int(A)))$.
- (8) Fuzzy α -closed [8] if $Cl(Int(Cl(A))) \leq A$.

Recall that if, A be a fuzzy set in a fts X then $\alpha Cl(A) = \bigcap \{B : B \ge A, Bisfuzzy\alpha - closed\}$ (resp. $\alpha Int(A) = \bigcup \{B : A \ge B, B \text{ is fuzzy } \alpha - open\}$) is called a fuzzy α -closure of A (resp. fuzzy α -interior of A)[8].

RESULT 2.2: (1) A fuzzy set A in a fts X is fuzzy α -closed (resp. fuzzy α -open) if and only if $A = \alpha Cl(A)$ (resp. $A = \alpha - Int(A)$) [8]. (2) Let A a fuzzy set of a fts (X, τ) . Then ; $Int(A) \leq \alpha Int(A) \leq A \leq \alpha Cl(A) \leq Cl(A)$.

DEFINITION 2.3[5]: A fuzzy set A of (X, τ) is said to be fuzzy generalized α -closed (in brief, $Fg\alpha$ -closed) set , if $\alpha Cl(A) \leq H$ whenever $A \leq H$ and H is fuzzy α -open set in X.

The complement of $Fg\alpha$ -closed set is fuzzy generalized open (in brief, $Fg\alpha$ -open) set [5].

DEFINITION 2.4: Let $f : (X, \tau) \to (Y, \sigma)$ be a function from a fts (X, τ) into a fts (Y, σ) . Then, f is called:

(i) fuzzy α -irresolute [4] if for each $V \in F\alpha O(Y), f^{-1}(V) \in F\alpha O(X)$.

(ii) fuzzy pre α -closed [10] if f(A) is a fuzzy α -closed set of Y for each fuzzy α -closed set A of X.

(iii) fuzzy pre α -open [9] if f(A) is a fuzzy pre α - open set in Y for each fuzzy α - open set A of X.

(iv) fuzzy strongly α -continuous [7] if inverse image each fuzzy semiopen set of Y is fuzzy α -open set in X

3 ap-F α -IRRESOLUTE AND ap-F α -CLOSED FUNC-TIONS

DEFINITION 3.1: A function $f: (X, \tau) \to (Y, \sigma)$ is said to be approximately fuzzy α -irresolute(briefly, ap-F α -irresolute), if $\alpha Cl(A) \leq f^{-1}(H)$ whenever H is fuzzy α -open subset of $(Y, \sigma), A$ is fuzzy g α -closed subset of (X, τ) and $A \leq f^{-1}(H)$.

DEFINITION 3.2: A function $f : (X, \tau) \to (Y, \sigma)$ is said to be approximately fuzzy α -closed (or ap-F α -closed), if $f(B) \leq \alpha Int(A)$ whenever A is fuzzy $g\alpha$ -closed subset of Y, B is fuzzy α -closed subset of X and $f(B) \leq A$.

THEOREM 3.3:(i) $f : (X, \tau) \to (Y, \sigma)$ is ap-F α -irresolute if $f^{-1}(A)$ is fuzzy α -closed in (X, τ) for every $A \in F \alpha O(Y)$

(ii) $f : (X, \tau) \to (Y, \sigma)$ is ap-F α -closed if $f(B) \in F\alpha O(Y)$ for every fuzzy α -closed subset B of (X, τ) .

PROOF:(i) Let $H \leq f^{-1}(A)$ where $A \in F\alpha O(Y)$ and H is a fuzzy gaclosed set of (X, τ) . Therefore, $\alpha Cl(H) \leq \alpha Cl(f^{-1}(A)) = f^{-1}(A)$. Thus, f is ap-F α -irresolute.

(ii) Let $f(B) \leq A$, where B is fuzzy α -closed set in (X, τ) and A is fuzzy g α -open in (Y, σ) . Therefore, $\alpha Int(f(B)) \leq \alpha Int(A)$. Then, $f(B) \leq \alpha Int(A)$. Thus, f is ap-F α -closed.

Clearly, fuzzy α -irresolute function is ap-F α -irresolute. Also, fuzzy pre α -closed is ap-F α -closed. The converse implications do not hold as shown in the following example :

EXAMPLE 3.4: Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Fuzzy sets E, A, B and H are defined as:

$$E(a) = 0, E(b) = 0.2, E(c) = 0.2;$$
$$A(a) = 0, A(b) = 0.2, A(c) = 0.7;$$
$$H(x) = 0, H(y) = 0.2, H(z) = 0.7;$$
$$B(x) = 0, B(y) = 0.2, B(z) = 0.2.$$

Let $\tau = \{0, E, 1\}$, $\sigma = \{0, H, 1\}$, $\gamma = \{0, A, 1\}$ and $\nu = \{0, B, 1\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ defined by f(a) = x, f(b) = y and f(c) = y is ap- $F\alpha$ -irresolute but not fuzzy α -irresolute and the function $h : (X, \gamma) \to (Y, \nu)$ defined by h(a)=x , h(b)=y and h(c)=y is a p-F α -closed but not fuzzy pre $\alpha\text{-closed}.$

REMARK 3.5 : Converse of the Theorem -3.3 do not hold. For,

EXAMPLE 3.6: The function f defined in Example 3.4 is ap-F α -irresolute. Fuzzy set K(x)0.8, K(y) = 0.7 and K(z) = 0.2 is fuzzy α -open in (Y, σ) but $f^{-1}(K)$ is not fuzzy α -closed in (X, τ) and hence f is not fuzzy α -irresolute. The function h defined in Example-3.4 is ap-F α -closed and the fuzzy set W(a) = 0.2, W(b) = 0.3, W(c) = 0.2 is fuzzy α -closed in (X, γ) but h(W) is not fuzzy α -open in (Y, ν) and hence h is not fuzzy pre α -closed.

In the following theorem, we get under certain conditions the converse of the theorem 3.3 is true:

THEOREM 3.7 :Let $f : (X, \tau) \to (Y, \sigma)$ be a function:

(i) Let all fuzzy subsets of (X, τ) be fuzzy clopen, then f is ap-F α -irresolute if and only if $f^{-1}(H)$ is fuzzy α -closed in (X, τ) for each $H \in F\alpha O(Y)$.

(ii) Let all fuzzy subsets of (Y, σ) be fuzzy clopen, then f is ap-F α -closed if and only if $f(B) \in F\alpha O(Y)$ for each fuzzy α -closed subset B of (X, τ) .

PROOF: (i) . The sufficiency is stated in Theorem- 3.2.

Necessity : Assume f is ap-F α -irresolute . Let A be an arbitrary fuzzy subset of (X, τ) such that $A \leq Q$ where $Q \in F\alpha O(X)$. Then by hypothesis $\alpha Cl(A) \leq \alpha Cl(Q) = Q$. Therefore, all fuzzy subsets of (X, τ) are fuzzy $g\alpha$ -closed (and hence all are fuzzy $g\alpha$ -open). So for any $H \in F\alpha O(Y), f^{-1}(H)$ is fuzzy $g\alpha$ -closed in X. Since f is ap-F α -irresolute $\alpha Cl(f^{-1}(H) \leq f^{-1}(H)$. Therefore, $\alpha Cl(f^{-1}(H) = f^{-1}(H)$, i.e. $f^{-1}(H)$ is fuzzy α -closed in (X, τ) .

(ii) The sufficiency is clear by Theorem -3.2 .

Necessity: Assume f is ap-F α -closed. As in (i), we obtain that all fuzzy subsets of (Y, σ) are fuzzy α -open. Therefore, for any fuzzy α -closed subset B of (X, τ) , f(B) is fuzzy $g\alpha$ -open in Y. Since f is ap-F α -closed, $f(B) \leq \alpha Int(f(B))$. Therefore, $f(B) = \alpha Int(f(B))$ i.e. f(B) is fuzzy α -open.

As an immediate consequence of Theorem -3.7, we have the following:

COROLLARY 3.8 : Let $f : (X, \tau) \to (Y, \sigma)$ be a function :

(i) Let all fuzzy subsets of (X, τ) be fuzzy clopen , then f is ap- $F\alpha$ -irresolute if and only if f is fuzzy α -irresolute .

(ii) Let all fuzzy subsets of (Y, σ) be fuzzy clopen , then f is ap- $F\alpha$ -closed if and only if f is fuzzy pre α -closed.

4 CONTRA F α -IRRESOLUTE MAPS

DEFINITION 4.1: A function $f : (X, \tau) \to (Y, \sigma)$ is said to be contra fuzzy α -irresolute, if $f^{-1}(A)$ is fuzzy α -closed in (X, τ) for each $A \in F\alpha O(Y)$.

DEFINITION 4.2: A function $f : (X, \tau) \to (Y, \sigma)$ is said to be approximately fuzzy pre α -closed, if $f(B) \in F\alpha O(Y)$ for each fuzzy α -closed set B of (X, τ) .

REMARK 4.3: The concepts of contra fuzzy α -irresoluteness and fuzzy α -irresoluteness are independent notions. For,

EXAMPLE 4.4 :Let $X = \{a, b, c\}$, $Y = \{x, y, z\}$ and fuzzy sets A, E, H and B are defined as :

$$A(a) = 0, A(b) = 0.2, A(c) = 0.7;$$

$$E(a) = 0, E(b) = 0.6, E(c) = 0.7;$$

$$H(x) = 0, H(y) = 0.8, H(z) = 0.9;$$

$$B(x) = 0, B(y) = 0.2, B(z) = 0.2.$$

Let $\tau = \{0, A, 1\}$, $\Gamma = \{0, E, 1\}$, $\nu = \{0, H, 1\}$ and $\sigma = \{0, B, 1\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ defined by f(a0 = x, f(b) = y, f(c) = z is contra fuzzy α -irresolute but not fuzzy α -irresolute. And the function $h : (X, \Gamma) \to (Y, \nu)$ defined by h(a) = x, h(b) = y and h(c) = z is fuzzy α -irresolute but not contra fuzzy α -irresolute.

In the same manner one can prove that, contra fuzzy α -closed functions and fuzzy pre- α -closed functions are independent notions.

DEFINITION 4.5: A function $f : (X, \tau) \to (Y, \sigma)$ is contra fuzzy α continuous if $f^{-1}(A)$ is fuzzy α -closed in (X, τ) for each open set A of (Y, σ) .

REMARK 4.6 : Every contra fuzzy α -irresolute function is contra fuzzy α -continuous, but not conversely. For,

EXAMPLE 4.7: Let $X = \{a, b\}$ and $Y = \{x, y\}$. Fuzzy sets A and B are defined as :

$$A(a) = 0.3, A(b) = 0.4;$$

 $B(x) = 0.7, B(y) = 0.6.$

Let $\tau = \{0, A, 1\}$ and $\sigma = \{0, B, 1\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ defined by f(a) = x, f(b) = y is contra fuzzy α -continuous but not contra fuzzy α -irresolute.

The following result can be easily verified. Its proof is straightforward.

THEOREM 4.8: Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following conditions are equivalent :

(i) f is contra fuzzy α -irresolute,

(ii) The inverse image of each fuzzy α -closed set in Y is fuzzy α -open in X.

REMARK 4.9: By Theorem 3.2 , we have that every contra fuzzy α -irresolute function is ap-F α -irresolute and every contra fuzzy α -closed function is ap-F α - closed, the converse implication do not hold (see Remark 3.5)

We define the following.

DEFINITION 4.10: A function $f : (X, \tau) \to (Y, \sigma)$ is called perfectly contra fuzzy α -irresolute if, the inverse image of each fuzzy α -open set in Y is fuzzy α -clopen in X.

LEMMA 4.11: The following properties are equivalent for a fuzzy set A of a fts (X, τ) :

- (i) A is fuzzy clopen ;
- (ii) A is fuzzy α -closed and fuzzy α -open ;
- (iii) A is fuzzy α -closed and fuzzy preopen.

PROOF: We only show that the implication (iii) \Rightarrow (ii), the proof of the other being obvious. Let A be fuzzy α -closed and fuzzy propen in X. Then, we have $Int(Cl(A)) \leq Cl(Int(Cl(A))) \leq A \leq Int(Cl(A)) \leq Cl(Int(Cl(A)))$. Therefore, A is fuzzy regular open and fuzzy regular closed and hence A is fuzzy clopen in X.

LEMMA 4.12: $f : (X, \tau) \to (Y, \sigma)$ is perfectly contra fuzzy α -irresolute function iff the inverse image of every fuzzy α -open set in Y is fuzzy clopen in X.

PROOF : It is suffices to apply Lemma -4.11 above.

Clearly, every perfectly contra fuzzy α -irresolute function is contra fuzzy α -irresolute and fuzzy α -irresolute function. But the converses may not be true . For,

EXAMPLE 4.13 : The functions f and g defined in Example -4.4 are contra fuzzy α -irresolute and fuzzy α -irresolute respectively but not perfectly contra fuzzy α -irresolute.

Clearly, we have the following implications : (i) Perfectly contra fuzzy α -irresoluteness $\Rightarrow ap - F\alpha$ -irresolute . (ii)Perfectly contra fuzzy α -irresoluteness \Rightarrow contra fuzzy α -irresoluteness as well as fuzzy α -irresolute.

(iii)Both contra fuzzy α -irresoluteness as well as fuzzy α -irresolute $\Rightarrow ap - F\alpha$ -irresolute.

Note that the none of above implications is reversible.

The following Theorem is a decomposition of perfectly contra fuzzy α -irresoluteness.

THEOREM 4.14 : For a function $f : (X, \tau) \to (Y, \sigma)$ the following are equivalent :

(i) f is perfectly contra α -irresolute.

(ii) f is contra fuzzy α -irresolute and fuzzy α -irresolute.

THEOREM 4.15 : If a function $f : (X, \tau) \to (Y, \sigma)$ is ap-fuzzy α -irresolute and fuzzy pre- α -closed, then for every $Fg\alpha$ -closed set A of (X, τ) , f(A) is $Fg\alpha$ -closed in (Y, σ) .

PROOF: Let A be a $Fg\alpha$ -closed subset of (X, τ) . Let $f(A) \leq B$ where $B \in F\alpha O(Y)$. Then $A \leq f^{-1}(B)$ holds. Since f is $ap - F\alpha$ -irresolute, $\alpha Cl(A) \leq f^{-1}(B)$ and hence $f(\alpha C(A)) \leq B$. Therefore, we have $\alpha Cl(f(A)) \leq \alpha Cl(f(\alpha Cl(A))) = f(\alpha Cl(A)) \leq B$. Hence, f(A) is $Fg\alpha$ -closed in (Y, σ) .

Now, we obtain that the composition of two contra fuzzy α -irresolute functions need not be contra fuzzy α -irresolute.

However, the following theorem holds. The proof is easy and hence omitted.

THEOREM 4.16: Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \gamma)$ be two functions. Then, the following properties hold :

(i) If g is fuzzy α -irresolute and f is contra fuzzy *alpha*-irresolute, then *gof* : $(X, \tau) \rightarrow (Z, \gamma)$ is contra fuzzy α -irresolute.

(ii) If g is contra fuzzy α -irresolute and f is fuzzy α -irresolute, then gof: $(X, \tau) \rightarrow (Z, \gamma)$ is contra fuzzy α -irresolute.

In an analogous way, we have the following.

THEOREM 4.17: Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \gamma)$ be two functions. Then, the following properties hold:

(i) If f is fuzzy pre- α -closed and g is ap- $F\alpha$ -closed , then $gof:(X,\tau)\to (Z,\gamma)$ is ap- $F\alpha$ -closed.

(ii) If f is ap- $F\alpha$ -closed and g is fuzzy pre- α -open and g^{-1} preserves $Fg\alpha$ -open sets, then $gof: (X, \tau) \to (Z, \gamma)$ is ap- $F\alpha$ -closed.

(iii) If f is ap- $F\alpha$ -irresolute and g is fuzzy α -irresolute, then $gof: (X, \tau) \to (Z, \gamma)$ is ap- $F\alpha$ -irresolute.

PROOF: (i) Suppose B is fuzzy α -closed subset in (X, τ) and A is $Fg\alpha$ open subset of (Z, γ) for each $(gof)(B) \leq A$. Then f(B) is $F\alpha$ -closed in (Y, σ)

since f is fuzzy pre- α -closed. As g is ap- $F\alpha$ -closed, $g(f(B)) \leq \alpha Int(A)$. This implies that gof is ap- $F\alpha$ -closed.

(ii) Suppose B is fuzzy α -closed subset of (X, τ) and A is fuzzy α -open in (Z, γ) for which $(gof)(B) \leq A$. Hence, $f(B) \leq g^{-1}(A)$. Then, $f(B) \leq \alpha Int(g^{-1}(A))$ because $g^{-1}(A)$ is $Fg\alpha$ -open and f is ap- $F\alpha$ -closed. Thus, $(gof)(B) = g(f(B)) \leq g(\alpha Int(g^{-1}(A))) \leq \alpha Int(gg^{-1}(A)) \leq \alpha Int(A)$. This shows that gof is ap- $F\alpha$ -closed.

(iii) Suppose H is $Fg\alpha$ -closed subset (X, τ) and $E \in F\alpha O(Z)$ for which $H \leq (gof)^{-1}(E)$. Then $g^{-1}(E) \in F\alpha O(E)$. Then, $g^{-1}(E) \in F\alpha O(Y)$ because g is fuzzy α -irresolute. Since f is ap- $F\alpha$ -irresolute, $\alpha Cl(A) \leq f^{-1](g^{-1}(E))=(gof)^{-1}(E)}$. This shows that gof is ap- $F\alpha$ -irresolute.

In the following we recall the $F\alpha - T_{1/2}$ spaces [5], to obtain the new characterizations of ap- $F\alpha$ -irresoluteness and ap- $F\alpha$ -closedness.

DEFINITION 4.18 [5]: A space (X, τ) is said to be $F\alpha T_{1/2}$ -space if every $Fg\alpha$ -closed set is fuzzy α -closed in it.

THEOREM 4.19 : Let (X, τ) be a space. Then the following statement are equivalent:

(i) (X, τ) is $F \alpha T_{1/2}$ -space,

(ii) f is ap-F α -irresolute, for every space (Y,σ) and every function $f: (X,\tau) \to (Y,\sigma)$.

PROOF :(i) \Rightarrow (ii) : Let *E* be a $Fg\alpha$ -closed subset of (X, τ) and $E \leq f^{-1}(H)$ where $H \in F\alpha O(Y)$. Since (X, τ) is $F\alpha T_{1/2}$ -space, *E* is fuzzy α -closed (i.e. $E = \alpha Cl(E)$). Therefore, $\alpha Cl(E) \leq f^{-1}(H)$ and hence f is ap- $F\alpha$ -irresolute function.

(ii) \Rightarrow (i) : Let B be a $Fg\alpha$ -closed subset of (X,τ) and Y be the set X with topology $\tau = \{0, B, 1\}$. Finally, let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function and by assumption f is an ap- $F\alpha$ -irresolute function. Since B is $Fg\alpha$ -closed in (X,τ) and fuzzy α -open in (Y,σ) with $B \leq f^{-1}(B)$, it follows that $\alpha Cl(B) \leq f^{-1}(B) = B$. Thus, B is fuzzy α -closed in X and hence the space X is $F\alpha T_{1/2}$ -space.

THEOREM 4.20 : Let (Y, σ) be a space. Then the following are equivalent:

(i) (Y, σ) is $F \alpha T_{1/2}$ -space,

(ii) For every (X,τ) and every function $f:(X,\tau)\to (Y,\sigma)$, f is ap -F α -closed.

Proof is analogous to Theorem-4.19 above.

References

 Azad K.K.:On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity; J.Math.Anal. Appl. 82(1981) 14-32.

- [2] Bin Shahan A.S.: On fuzzy strong semicontinuity and fuzzy pre continuity, Fuzzy Sets and Systems, 44(1991) 303-308.
- [3] Chang C.L.: Fuzzy topological space, J.Math.Anal.Appl., 24(1968) 182-190.
- [4] Prasad R., Thakur S.S and Saraf R.K.: Fuzzy α-irresolute mappings; J.Fuzzy Math. 2(1994) 335-339.
- [5] Saraf R.K. and Mishra S.: Fgα-closed sets; Jour.Tri.Math.Soc.2(2000) 27-32.
- [6] Saraf R.K., Caldas M. and Mishra S.: On Fa α -irresolute mappings ; Bull.Malayasian Math.Sci.Soc.(2001) 193-199.
- [7] Saraf R.K., Mishra S. and Govindappa Navalagi : On fuzzy strongly α -continuous functions ; Bull.Greek Math.Soc.;47(2003) 13-18.
- [8] Singal M.K. and Rajvanshi N.: Fuzzy α -sets and α -continuous functions; Fuzzy Sets and Systems 45(5)(1992) 383-390.
- [9] Thakur S.S. and Saraf R.K.:Fuzzy pre-alphaopen mappings; Acta Cinica Indica 4(1996) 507-509.
- [10] Thakur S.S. and Saraf R.K.:Fuzzy pre-α-closed mappings;Proc.National Sem.Functional Analysis Raipur (1997) 47-51.
- Thakur S.S. and Saraf R.K.:Fuzzy strongly α-irresolute mappings; Jour.Tri.Math.Soc. (2002) 37-42.
- [12] Thakur S.S. and Saraf R.K.:α-compact fuzzy topological spaces; Math.Bohemica 3(1995) 299-303.
- [13] Zadeh L.A.: Fuzzy sets, Inform. and Control., 8(1965) 338-353.

ADDRESSES :

R.K.Saraf Department of Mathematics Govt.K.N.G.College, DAMOH(M.P.)-470661, INDIA

G.B.Navalagi Department of Mathematics KLE Societys G.H.College,HAVERI-581110, Karnataka,INDIA e-mail: gnavalagi@hotmail.com