Countably Weak SP-compactness* ## Shi-Zhong Bai Department of Mathematics, Wuyi University, Guangdong 529020, P.R.China Abstract: In this paper, countably weak SP-compact L-subsets is introduced in L-topological spaces. It is hereditary for semi-preclosed subsets; it is finitely additive; and it is preserved under SP-irresolute mapping. Every set with finite support is countably weak SP-compact. Also the countably weak SP-compactness is described with cover form and finite intersection property. **Key words:** L-topological spaces; Remote-neighborhood; Semi-preclosed set; Countably weak SP-compact sets ### 1.Introduction and preliminaries In general topological spaces, the concepts of semi-preopen sets and semi-preclosed sets were introduced by Andrijevic [1]. In [6], Thakur and Singh extended these concepts to L-topological spaces, where L=[0,1]. With these semi-preclosed sets, we have introduced the concept semi-preclosed remotedneighborhood and studied the SP-compactness and weak SP-compactness in the general L-topological spaces in [2,3], respectively, where L is fuzzy lattice. In this paper, we introduce the concept of countably weak SP-compactness in the general L-topological space. It is defined for any L-subset, and it preserves some good properties of compactness in general topological spaces. In this paper, L always denotes a fuzzy lattice. L^X denotes the set of all L-subsets on nonempty crisp set X. Put $pr(L) = \{e \in L: e \text{ is a prime element}[6] \text{ of } L$, ^{*} The work is supported by the NNSF of China and NSF of Guangdong Province (No. 60473009, 021358). and e < 1} and $\varepsilon_r(A) = \{x \in X: A(x) \ge r\}$, And L-topological space is denoted by L-ts. $SPO(L^X)$ and $SPC(L^X)$ will always denote the family of semi-preopen sets and family of semi-preclosed sets[2,6] of an L-ts (L^X, δ) , respectively. **Definition 1.1** (Bai [2,3]). Let (L^X, δ) be an L-ts and $x_\lambda \in M^*(L^X)$. $A \in SPC(L^X)$ is called a semi-preclosed remote-neighborhood, or briefly, SPC-RN of x_λ , if $x_\lambda \notin A$. The set of all SPC-RNs of x_λ is denoted by $\pi(x_\lambda)$. $\phi \subset SPC(L^X)$ is called an α -SPC-remote neighborhood family of $A \in L^X$ (briefly α -SPC-RF of A) if for each x_α in A, there is $P \in \phi$ such that $P \in \pi(x_\alpha)$. $\phi \subset L^X$ is called a family with the α -finite intersection property in $A \in L^X$ ($\alpha \in L$), if for each finite subfamily ψ of ϕ there is an $x \in \varepsilon_\alpha(A)$ such that $(\Lambda \psi)(x) \ge \alpha$. $\mu \subset SPO(L^X)$ is called an r-SP-cover of $A \in L^X$ if for each $x \in \varepsilon_r(A)$, there is $U \in \mu$ such that $U(x) \not < r$, $r \in Pr(L)$. $A \in L^X$ is called weakly SP-compact, if for each α -net S in $A(\alpha \in M(L))$ and each $r \in \beta^*(\alpha)$, S has an SP-cluster point in A with height r. Specifically, when $A = I_X$ is weakly SP-compact, we call (L^X, δ) a weakly SP-compact space. **Theorem 1.2** (Bai [3]). Let (L^X, δ) be an L-ts and $A \in L^X$. A is weakly SP-compact iff for each $r \in \beta$ *(α) and each r-SPC-RF ϕ of A has a finite subfamily ψ of ϕ such that ψ is an α -SPC-RF of $A(\alpha \in M(L))$. ### 2. Countably weak SP-compactness **Definition 2.1.** Let (L^X, δ) be an L-ts and $A \in L^X$. A is called countably weak SP-compact, if for each $r \in \beta^*(\alpha)$ and each countable r-SPC- $RF \oplus of A$ has a finite subfamily Ψ of Φ such that Ψ is an α -SPC-RF of $A(\alpha \in M(L))$. Specifically, when $A=I_X$ is countably weak SP-compact, we call (L^X, δ) a countably weak SP-compact space. **Lemma 2.2.** Let (L^X, δ) be an L-ts, $A \in L^X$ and $\mu \subset SPO(L^X)$. Then μ is an r-SP-cover of A iff $\mu' \subset SPC(L^X)$ is an r'-SPC-RF of A, where $r \in pr(L)$. **Theorem 2.3.** Let (L^X, δ) be an L-ts and $A \in L^X$. Then A is countably weak SP-compact iff for each $r' \in \beta *(\alpha)$ ($\alpha \in M(L)$) and every countable r-SP-cover μ of A, there is a finite subfamily v of μ such that v is an α' -SP-cover of A. **Proof.** This follows directly from Definition 2.1 and Lemma 2.2. **Lemma 2.4.** Let (L^X, δ) be an L-ts, $A \in L^X$, $\phi \subset SPC(L^X)$ and $\alpha \in M(L)$. Then ϕ has the α -finite intersection property in A iff ψ' is not an α' -SP-cover of A for each finite subfamily ψ of ϕ . **Proof.** It can be proved by Definition 1.1. **Theorem 2.5.** Let (L^X, δ) be an L-ts and $A \in L^X$. Then A is countably weak SP-compact iff for each $\alpha \in M(L)$ and every countable family $\phi \subset SPC(L^X)$ which has the α -finite intersection property in A, there is $x \in \varepsilon_{\alpha}(A)$ and some $r' \in \beta *(\alpha)$ such that $\wedge \phi(x) \ge r'$. **Proof.** This follows directly from Theorem 2.3 and Lemma 2.4. **Theorem 2.6.** Let A be a countably weak SP-compact set in L-ts (L^X, δ) . Then for each $B \in SPC(L^X)$, $A \wedge B$ is countably weak SP-compact. **Proof.** Let Φ be a countable r-SPC-RF of $A \land B$. Put $\Phi_1 = \Phi \cup \{B\}$, then Φ_1 is a countable r-SPC-RF of A. In fact, for each $x_r \in A$, if $x_r \in B$ then $x_r \in A \land B$. Hence, there is $P \in \Phi \subset \Phi_1$ such that $P \in \pi(x_r)$. If $x_r \notin B$, then $B \in \Phi_1$ and $B \in \pi(x_r)$. Thus, Φ_1 is indeed a countable r-PSC-RF of A. Since A is a countably weak SP-compact set, for each $r \in \beta * (\alpha)$ and countable r-SPC-RF Φ_1 of A, there is finite subfamily Ψ_1 of Φ_1 such that Ψ_1 is an α -SPC-RF of A. Let $\Psi = \Psi_1 - \{B\}$, then Ψ is a finite subfamily of Φ , and Ψ is an α -SPC-RF of $A \land B$. In fact, $x_\alpha \in A \land B$, then $x_\alpha \in A$, from the definition of Ψ_1 , there exists $P \in \Psi_1$ with $P \in \pi(x_\alpha)$. However, $x_\alpha \in B$ so $P \neq B$, and thus $P \in \Psi_1 - \{B\} = \Psi$. Hence, $A \land B$ is countably weak SP-compact. **Corollary 2.7.** Countably weak SP-compactness is hereditary for semi-preclosed subsets. **Theorem 2.8.** Let A and B be two Countably weak SP-compact sets in an L-ts (L^X, δ) . Then $A \lor B$ is also Countably weak SP-compact. **Proof.** Suppose for each $r \in \beta *(\alpha)$ ($\alpha \in M(L)$), Φ is a countable r-SPC-RF of $A \lor B$. Then Φ is a countable r-SPC-RF of both A and B. Since A and B are both countably weak SP-compact sets, there exist finite subfamily Ψ_1 and Ψ_2 of Φ such that Ψ_1 and Ψ_2 are α -SPC-RF of A and B, respectively. Put $\Psi = \Psi_1 \cup \Psi_2$. Clearly, Ψ is a finite subfamily of Φ , and also an α -SPC-RF of $A \lor B$. Thus, $A \lor B$ is countably weak SP-compact. **Theorem 2.9.** Let (L^X, δ) be an L-ts and $A \in L^X$. If A with finite support, then A is countably weak SP-compact. **Proof.** It is clearly. **Definition 2.10.** (Bai [2]). Let $f:(L^x, \delta) \to (L^y, \tau)$ an L-fuzzy mapping. f is called an SP-irresolute mapping if $f^{-1}(B) \in SPO(L^x)$ for each $B \in SPO(L^y)$. **Theorem 2.11.** Let (L^x, δ) be a countably weak SP-compact space and $f:(L^x, \delta) \to (L^x, \tau)$ an onto SP-irresolute mapping. Then (L^x, τ) is a countably weak SP-compact space. ### References - [1] D.Andrijevic, Semi-preopen sets. Mat. Vesnik, 38(1986), 24-32. - [2] S.Z.Bai, L-fuzzy SP-compact sets, Advances in Mathematics, 33(2003), 316-322. - [3] S.Z.Bai, Weakly SP-compact sets in L-topological spaces, Proc.7th.ICIS. 2003, 77-79. - [4] C.L.Chang, Fuzzy topological spaces, J.Math.Anal. Appl. 24(1968), 182-190. - [5] Y.M.Liu, M.K.Luo, Fuzzy topology, World Sci. Publishing, Singapore, 1998. - [6] S.S.Thakur and S.Singh, On fuzzy semi-preopen sets and fuzzy semi-precontinuity. Fuzzy Sets Syst. 98(1998), 383-391. - [7] G.J.Wang, Theory of L-fuzzy topological spaces, Press of Shaanxi Normal University, Xina, 1988.