The functional representation of α , ε , σ , θ operators by characteristic equations

R.Z.Salakhutdinov

Saratov State Economic University, Saratov, Russia e-mail: ravsal@mail.ru

This paper deals with the problem of the functional representation of α , ε , σ , and θ operators. We solve this problem by finding solutions to the characteristic equations based on the triangular norm and conorm.

Keywords: t-norms, t-conorms, characteristic equations, fuzzy implications.

Introduction. E. Sanchez [1,2] proposed a method for solving fuzzy relation equations. Many applications can be derived using this method. The solution was based on α , ε , and σ operators.

We recall that α stands for α - operation defined by

$$x\alpha y = \begin{cases} 1, x \le y \\ y, x > y \end{cases}.$$

The definitions ε and σ - operators are given via the following expressions:

$$x\varepsilon y = \begin{cases} 0, x \ge y \\ y, x < y \end{cases}$$
 and $x\sigma y = \begin{cases} y, x \ge y \\ 0, x < y \end{cases}$.

Let f and g be additive generators of Archimedian t – norm T_A and Archimedian t – conorm \bot_A , then:

$$T_A(x,y) = f^{-1}(\min(f(0), f(x) + f(y))),$$

$$\bot_A(x,y) = g^{-1}(\min(g(1), g(x) + g(y))),$$

where $f:[0;1] \to [0;\infty]$ is continuous and strictly decreasing function, f(1)=0; $g:[0;1] \to [0;\infty]$ is continuous and strictly increasing function, g(0)=0; f^{-1} and g^{-1} are the inverses of f and g. In this case we denote α and ε - operators as α_A , ε_A and define [3,4]:

$$x\alpha_A y = f^{-1}(f(y) - f(x \vee y));$$

$$x\varepsilon_A y = g^{-1}(g(y) - g(x \wedge y)).$$

Obviously α_A and ε_A are n-dual operators in the sense of De Morgan's law:

$$x\varepsilon_A y = n\{n(x) \alpha n(y)\},$$

where n(s) is a strong negation function.

Example 1. Several examples of t – norms, t – conorms and corresponding α , ε - operators are presented below:

(i) (ii) (iii) (iii)
$$T(x,y) = x \cdot y; \qquad T(x,y) = 0 \lor (x+y'-1); \quad T(x,y) = \frac{x \cdot y}{x+y-x \cdot y};$$

$$x\alpha \ y = \begin{cases} 1, x \le y \\ \frac{y}{x}, x > y \end{cases}; \qquad x\alpha \ y = \begin{cases} 1, x \le y \\ 1-x+y, x > y \end{cases}; \quad x\alpha \ y = \begin{cases} \frac{1}{x} \cdot y \\ \frac{x \cdot y}{x-y+x \cdot y}, x > y \end{cases};$$

$$\pm (x, y) = x + y - x \cdot y; \quad \pm (x, y) = 1 \wedge (x + y); \qquad \pm (x, y) = \frac{x + y - 2xy}{1 - xy};$$

We now introduce the θ - operator

$$x\theta \ \ y = \begin{cases} y, x \le y \\ 1, x > y \end{cases}$$

and list below some properties of α , ε , σ , and θ operators:

- 1. $x\varepsilon y \le x\alpha y$; $x\varepsilon y \le x \lor y$; $x\alpha y \ge x \land y$
- 2. $x\sigma y \le x \land y \le x \lor y \le x\theta y$;
- 3. ε , α are N-dual operators in the sense of De Morgan's law $x \in y = N\{N(x) \mid \alpha \mid N(y)\}$ with the negation defined as N(s) = 1 - s;
- 4. σ , θ are N-dual operators in the sense of De Morgan's law $x\sigma y = N\{N(x)\theta N(y)\}\$ with the negation defined as N(s) = 1 - s.

In the next section we will represent those operators via characteristic equations by using additive generators f and g.

Results.

1. Characteristic equations.

In this section we introduce the following characteristic equations:

$$T(a \oplus b, z) = b; \perp (a \otimes b, z) = b$$
 (1)

where T, \perp are a t-norm and a t-conorm; \oplus , \otimes are some operations; a, b are given and z is unknown.

Let us now present a set of propositions that can be used to find a solution of the fuzzy relation equations as well as to derive further applications.

In particular, in the characteristic equations (1) we set $T = T_M = \min$; $\Theta = \vee$ and $\perp = \perp_M = \max$; $\otimes = \wedge$.

Let us denote
$$z_{\max} = \max_{z \in \Omega} z$$
; $z_{\min} = \min_{z \in \Omega} z$; $\Omega \subseteq [0;1]$.

The following state results.

Proposition 1 (α - operation). The solution of the characteristic equation

$$T_M(x \lor y, z) = y \text{ is } z = \begin{cases} (y;1], x \le y \\ y, x > y \end{cases}$$

From Proposition 1 we have the particular solution $z_{max} = x\alpha y$.

Proposition 2 (ε - operation). The solution of the characteristic equation

$$\perp_{M} (x \wedge y, z) = y \text{ is } z = \begin{cases} [0; y), & x \geq y \\ y, & x < y \end{cases}$$

From Proposition 2 we have the particular solution $z_{\min} = x\varepsilon y$.

In the characteristic equations (1) we set $\theta = \alpha$ and $\theta = \varepsilon$. Now, θ , σ - operators can be determined by characteristic equations from propositions 3,4.

Proposition 3 (θ - operation). The solution of the characteristic equation

$$T_M(x\alpha y, z) = y$$
 is $z = \begin{cases} y, x \le y \\ (y;1], x > y \end{cases}$

From this we have the particular solution $z_{\text{max}} = x\theta y$

Proposition 4 (σ - operation). The solution of the characteristic equation

$$\perp_M (x\varepsilon \ y, z) = y \text{ is } z = \begin{cases} y, x \ge y \\ [0; y), x < y \end{cases}$$

From Proposition 4 we have the particular solution $z_{\min} = x\sigma y$.

Let us assume that T, \perp are Archimedian triangular norm and conorm. Then in the characteristic equations (1) we set $T = T_A$; $\Theta = \vee$ and $\bot = \bot_A$; $\otimes = \wedge$. In this case the functional representation of α_A and ε_A can be derived from propositions 5 and 6.

Proposition 5 (α_A - operation). The solution of the characteristic equation

$$T_A(x \vee y, z) = y$$
 is $z_{\text{max}} = x\alpha_A y$; $x\alpha_A y = f^{-1}(f(y) - f(x \vee y))$

Proof. We consider two cases. Let $x \le y$, then the solution of the equation $T_A(y,z) = y$ is $z_{\text{max}} = 1$. If x > y, then by the definition of T_A we have $z = f^{-1}(f(y) - f(x))$.

Proposition 6 (ε_A - operation). The solution of the characteristic equation

$$\perp_A (x \wedge y, z) = y$$
 is $z_{\min} = x \varepsilon_A y$; $x \varepsilon_A y = g^{-1} (g(y) - g(x \wedge y))$

Proof. Here we also need to consider two cases. If $x \ge y$, then the solution of the equation $\perp_A (y, z) = y$ is $z_{\min} = 0$. Otherwise, if x < y, then according to the definition of \perp_A , the solution of this equation is $z = g^{-1}(g(y) - g(x))$.

In order to obtain functional representations of the new operators θ_A and σ_A , we introduce the following characteristic equations:

$$T(a \oplus b, z) = a \otimes b; \perp (a \otimes b, z) = a \oplus b$$
 (2)

Returning to α , ε - operators, we consider the pair of N - dual operators α_G , ε_G :

$$x\alpha_G y = \begin{cases} 1, x \le y \\ 0, x > y \end{cases}; \qquad x\varepsilon_G y = \begin{cases} 0, x \ge y \\ 1, x < y \end{cases}; \qquad x\varepsilon_G y = N\{N(x) \alpha_G N(y)\}$$

Proposition 7 (σ_A - operation). The solution of the characteristic equation

$$\perp_M (x\varepsilon_G y, z) = x\alpha_A y \text{ is } z_{\min} = x\widetilde{\sigma}_A y$$

where
$$x\widetilde{\sigma}_A y = \begin{cases} f^{-1}(f(y) - f(x)), x \ge y \\ 0, x < y \end{cases}$$
.

Proof. We first set x < y, in this case $z_{\min} = 0$. If x = y then the solution is $z = 1 = f^{-1}(f(x) - f(x))$. Now, when x > y, we can derive the solution $z = f^{-1}(f(y) - f(x))$ from the characteristic equation $\max(0, z) = f^{-1}(f(y) - f(x))$. Hence $z_{\min} = x\widetilde{\sigma}_A y$.

In order to obtain minimal solution of the fuzzy relation equation [2] we need the correction $\tilde{\sigma}_A$ - operator. We add the following condition: $x\tilde{\sigma}_A$ y=0 at y=0. As a result we get σ_A - operator

$$x\sigma_A y = \begin{cases} f^{-1}(f(y) - f(x)), & x \ge y > 0 \\ 0, & x < y \quad or \quad y = 0 \end{cases}$$

Proposition 8 (θ_A - operation). The solution of the characteristic equation

$$T_{M}(x\alpha_{G}y,z) = x\varepsilon_{A} y \text{ is } z_{\text{max}} = x\widetilde{\theta}_{A} y$$
where $x\widetilde{\theta}_{A} y = \begin{cases} g^{-1}(g(y) - g(x)), x \leq y \\ 1, x > y \end{cases}$.

Proof. Suppose that x > y, then $z_{\text{max}} = 1$. We can easily see that if x = y then the solution is $z = 0 = g^{-1}(g(x) - g(x))$. Finally, if x < y then the solution $z = g^{-1}(g(y) - g(x))$ can be derived from the characteristic equation $\min(1, z) = g^{-1}(g(y) - g(x))$. Hence $z_{\text{max}} = x\widetilde{\theta}_A y$.

We now add the following condition: $x\tilde{\theta}_A$ y=1 at y=1 and get θ_A - operator

$$x\theta_A \ y = \begin{cases} g^{-1}(g(y) - g(x)), x \le y < 1 \\ 1, x > y \quad or \quad y = 1 \end{cases}$$

Example 2. Several examples of t – norms, t – conorms and corresponding σ_A , θ_A – operations are presented below:

(i) (ii) (iii)
$$T(x,y) = x \cdot y; \qquad T(x,y) = 0 \lor (x+y-1); \qquad T(x,y) = \frac{x \cdot y}{x+y-x \cdot y};$$

$$x\sigma_A y = \begin{cases} 0, x < y & \text{or } y = 0 \\ \frac{y}{x}, x \ge y & \text{if } x > y \end{cases}; \qquad x\sigma_A y = \begin{cases} 0, x < y & \text{or } y = 0 \\ 1-x+y, x \ge y > 0 & \text{if } x > y \end{cases}; \qquad x\sigma_A y = \begin{cases} 0, x < y & \text{or } y = 0 \\ \frac{x \cdot y}{x-y+x \cdot y}, x \ge y & \text{if } x > y \end{cases};$$

$$\pm (x,y) = x+y-x \cdot y; \quad \pm (x,y) = 1 \land (x+y); \qquad \pm (x,y) = \frac{x+y-2xy}{1-xy};$$

$$x\theta_A y = \begin{cases} 1, x > y & \text{or } y = 1 \\ y-x, x \le y < 1 & \text{if } x > y \end{cases}; \qquad x\theta_A y = \begin{cases} 1, x > y & \text{or } y = 1 \\ y-x, x \le y < 1 & \text{if } x > y \end{cases};$$

2. Fuzzy implications.

In this section we use the definition of the fuzzy implication presented by [5].

Any function $I:[0;1]^2 \rightarrow [0;1]$ is called fuzzy implication if it fulfils the following conditions:

- 1. $x \le s \implies I(x,y) \ge I(s,y), \forall x,y,s \in [0;1];$
- 2. $y \le s \Rightarrow I(x,y) \le I(x,s), \forall x,y,s \in [0,1];$
- 3. I(0,y)=1, $\forall y \in [0,1]$; I(x,1)=1, $\forall x \in [0,1]$; I(1,0)=0.

For example, it is easy to check that for the function of two variables

$$I_f(x, y) = x\alpha_A y = f^{-1}(f(y) - f(x \vee y))$$

the above conditions hold.

Consequently, the α_A - operator is equivalent to an implication operation I_f .

Proposition 9. If f(n(s)) = g(s), then the function of two variables

$$I_{fg}(x, y) = f^{-1}(g(x) - g(x \wedge y))$$

is the fuzzy implication.

Proof. Since function $I_f(n(y), n(x))$ satisfies above stated conditions, then taking into consideration theorem's condition, we can write

$$I_{f}(n(y),n(x)) = f^{-1}(f(n(x)) - f(n(x) \vee n(y))) = f^{-1}(g(x) - g(x \wedge y)) = I_{fg}(x,y)$$

Proposition 10. If \perp is a t-conorm, then the function of two variables

$$I_{g\perp}(x,y) = g^{-1}(g(1) + g(y) - g(\perp(x,y)))$$

is the fuzzy implication.

Corollary. If f(s) = g(1) - g(s), then in accordance with proposition 10, the function of two variables

$$I_{f\perp}(x,y) = f^{-1}(f(y) - f(\perp(x,y)))$$

is the fuzzy implication.

Example 3. Let $\perp (x, y) = \max(x, y)$, then in accordance with proposition 10, we have fuzzified Lukasievicz implication

$$I_{L}(x,y) = \begin{cases} g^{-1}(g(1) - g(x) + g(y)), x > y \\ 1, x \le y \end{cases}$$

$$I_L(x, y) = \min(1, g^{-1}(g(1) - g(x) + g(y))).$$

Example 4. Let $\perp (x, y) = \perp_A$, then in accordance with proposition 10, we have fuzzified binary logic implication

$$I_B(x, y) = \begin{cases} n_g(x), y < n_g(x) \\ y, y \ge n_g(x) \end{cases}$$

or
$$I_B(x, y) = \max(n_g(x), y),$$

where $n_g(s) = g^{-1}(g(1) - g(s))$ is the negation function.

References

- [1] Sanchez E. Resolution of composite fuzzy relation equations. Information and Control, 30, (1976), 38-48
- [2] Sanchez E. Resolution of composite fuzzy relation equations: Applications to medical diagnosis in Brouwerian logic. In: Fuzzy automata and decision processes. Eds. M.Gupta, B.Gaines, (1977), 221-234
- [3] Salakhutdinov R.Z. The solution of E.Sanchez's fuzzy relation equations based on tnorm. BUSEFAL, 81, (2000), 17-22
- [4] Salakhutdinov R.Z. Functional representation of fuzzy set-theoretic operations and its applications. Proceedings of World Conference on Intelligent Systems for Industrial Automation. Tashkent, (2000), 115-120
 - [5] Drewniak J. Selfconjugate fuzzy implications. BUSEFAL, 81, (2000), 80-89