Fuzzy S* Strong Semicontinuity*

Shi-Zhong Bai

Department of Mathematics, Wuyi University, Guangdong 529020, China

Abstract: The aim of this paper is to introduce a new class of function, called fuzzy S* strongly semicontinuous function. Its properties, its relationship with other functions, examples, and preservations of some fuzzy spaces under this function are studied.

Key words: Fuzzy topology; Strongly semiopen set; Fuzzy S* strong semicontinuity

1.Introduction and Preliminaries

The theory of fuzzy continuity for fuzzy topological spaces was introduced by Chang [5]. The concept of fuzzy continuity plays an important role in fuzzy topological spaces. Along this line many weaker forms of fuzzy continuity were introduced [1,2,4,6,7]. In [2], we introduced and studied the concepts of fuzzy strongly semicontinuous function. In this paper, we introduce a new class of function, called fuzzy S* strongly semicontinuous function. It is a weaker form of fuzzy continuity, but it is a stronger form of fuzzy strongly semicontinuity.

Throughout the paper by (X, δ) or simply by X we mean fuzzy topological space(in the Chang's [5] sense), briefly fts. A^o , A^- and A' will denote the interior, closure and complement of fuzzy set A, respectively. A fuzzy set A in X is said to be (1) fuzzy strongly semiopen if there is a fuzzy open set B such that $B \le A \le B^-$, that is, $A \le A^{o-o}$; (2) fuzzy strongly semiclosed if there is a fuzzy closed set B such that $B^{o-} \le A \le B$, that is, $A \le A^{-o-}$ [2]. The family of fuzzy strongly semiopen (resp. strongly semiclosed) sets of a fts X will be denoted by SSO(X) (resp. SSC(X)). Let A be a fuzzy set in X. Then $A^{\triangle} = \bigcup \{B: B \le A, B \in SSO(X)\}$ and $A^{\sim} = \bigcap \{B: A \le B, B \in SSO(X)\}$ and $A^{\sim} = \bigcap \{B: A \le B, B \in SSO(X)\}$

^{*}The work is supported by the NNSF of China and NSF of Guangdong Province (No. 10271069, 021358).

 $B \in SSC(X)$ } are called the fuzzy strong semiinterior and fuzzy strong semiclosure of A [2], respectively. Since the union (intersection) of any two fuzzy strongly semiclosed (semiopen) sets need not be a strongly semiclosed (semiopen) set [2], $A \in SSC(X)$ and $B \in SSC(X)$ do not necessarily lead to $A \cup B \in SSC(X)$. Let $USSC(X) = \{A \in SSC(X): for \ each \ B \in SSC(X), A \cup B \in SSC(X)\}$, $ISSO(X) = \{A \in SSO(X): for \ each \ B \in SSO(X), A \cap B \in SSO(X)\}$. Clearly, $\delta \subset ISSO(X) \subset SSO(X)$.

2. Fuzzy S* Strongly Semicontinuous Functions

Definition 2.1. A function $f: (X, \delta) \rightarrow (Y, \tau)$ from an fts (X, δ) to another fts (Y, τ) is called fuzzy S* strongly semicontinuous if $f^{-1}(B) \in USSC(X)$ for each $B' \in \tau$.

Theorem 2.2. A function $f: (X, \delta) \rightarrow (Y, \tau)$ is fuzzy S^* strongly semicontinuous iff $f^{-1}(B) \in ISSO(X)$ for each $B \in \tau$.

Proof. This is immediate from Definition 2.1.

Theorem 2.3. Let $f: (X, \delta) \rightarrow (Y, \tau)$ be a fuzzy S^* strongly semicontinuous function. Then:

- (1) $f(A^{\sim}) \leq (f(A))^{\sim}$ for each fuzzy set A in X.
- $(2) f^{-1}(B)$ $\stackrel{\sim}{\leq} f^{-1}(B)$ for each fuzzy set B in Y.
- (3) $f^{-1}(B^o) \leq f^{-1}(B)$) for each fuzzy set B in Y.
- (4) There is a base β for τ such that $f^{-1}(B) \in ISSO(X)$ for each $B \in \beta$.
- (5) For each fuzzy point x_a in X and each $B \in \tau$ with $f(x_a) \in B$, there exists an $A \in ISSO(X)$ such that $x_a \in A$ and $f(A) \leq B$.
- **Proof.** (1): Let A be a fuzzy set in X. Then $(f(A))^-$ is a fuzzy closed set in Y. Since f is fuzzy S* strongly semicontinuous, $f^{-1}((f(A))^-) \in USSC(X)$, and

$$A^{\sim} \leq (f^{-1}f(A))^{\sim} \leq (f^{-1}((f(A))^{-1}))^{\sim} = f^{-1}((f(A))^{-1}).$$

Thus, $f(A^{\sim}) \leq f f^{-1}((f(A))^{-}) \leq (f(A))^{-}$.

- (2): Let B be a fuzzy set in Y. By $(1), f((f^{-1}(B))^{\sim}) \leq (ff^{-1}(B))^{\sim} \leq B^{\sim}$. Thus, $(f^{-1}(B))^{\sim} \leq f^{-1}f((f^{-1}(B))^{\sim}) \leq f^{-1}(B^{\sim})$.
- (3): Let *B* be a fuzzy set in *Y*. By (2), $f^{-1}(B') \ge (f^{-1}(B'))^{\sim} = ((f^{-1}(B))')^{\sim}$. From Lemma 1.3 and Theorem 3.3 in [2], we have

$$f^{-1}(B^{o}) = f^{-1}(B'^{-1}) = (f^{-1}(B'^{-1}))' \leq (f^{-1}(B))'^{-1} = (f^{-1}(B))^{\triangle}.$$

- (4): Obvious.
- (5): Let f be fuzzy S* strongly semicontinuous, x_a be a fuzzy point in X and $B \in \tau$ such that $f(x_a) \in B$. Then $x_a \in f^{-1}(B)$. Let $A = f^{-1}(B)$, then $A \in ISSO(X)$. We

have $f(A)=ff^{-1}(B) \leq B$.

Theorem 2.4. Let $f: (X, \delta) \rightarrow (Y, \tau)$ be a fuzzy S^* strongly semicontinuous function, and one-to-one and onto. Then $(f(A))^{\circ} \leq f(A^{\triangle})$ for each fuzzy set A in X.

Proof. Let f be fuzzy S* strongly semicontinuous and A be any fuzzy set in X. Then $f^{-1}((f(A))^o) \in USSO(X)$. By Theorem 2.3 and the fact that f is one-to-one, we have $f^{-1}((f(A))^o) \leq (f^{-1}f(A))^{\triangle}) = A^{\triangle}$. Again, since f is onto, we have $(f(A))^o = f f^{-1}((f(A))^o) \leq f(A^{\triangle})$.

Proposition 2.5. If $f: X \rightarrow Y$ is a fuzzy S^* strongly semicontinuous function and $g: Y \rightarrow Z$ is a fuzzy continuous function, then gf is fuzzy S^* strongly semicontinuous.

Theorem 2.6. Let $f: X_1 \rightarrow X_2$ and $g: X_3 \rightarrow X_4$ be fuzzy S^* strongly semicontinuous. Then the product $f \times g: X_1 \times X_3 \rightarrow X_2 \times X_4$ is fuzzy strongly semicontinuous.

Proof. Let $B = \bigcup (A_i \times B_j)$, where the A_i 's and B_j 's are open sets of X_2 and X_4 , respectively. B is a open set of $X_2 \times X_4$. Then

$$(f \times g)^{-1}(B) = (f \times g)^{-1}(U(A_i \times B_j))$$

= $U(f \times g)^{-1}(A_i \times B_j)$
= $U(f^{-1}(A_i) \times g^{-1}(B_j)).$

That $(f \times g)^{-1}(B)$ is a strongly semiopen set follows from Theorem 2.8 and 2.5(1) in [2]. Thus, $f \times g$ is fuzzy strongly semicontinuous.

Theorem 2.7. Let p_i : $X_1 \times X_2 \rightarrow X_i$ (i=1,2) be the projection of $X_1 \times X_2$ on X_i . If $f: X \rightarrow X_1 \times X_2$ is fuzzy S^* strongly semicontinuous, then $p_i f$ is also fuzzy S^* strongly semicontinuous.

Proof. This follows directly from Proposition 2.5.

Theorem 2.8. Let $f: X_1 \rightarrow X_2$ be a function. If the graph $g: X_1 \rightarrow X_1 \times X_2$ of f is fuzzy S^* strongly semicontinuous, then f is also fuzzy S^* strongly semi-continuous.

Proof. This follows directly from Theorem 2.7.

3. Examples

Clearly, the following statements are valid: fuzzy continuity \Rightarrow S* strong semicontinuity \Rightarrow strong semicontinuity

None of the converses need to be true. We give the following examples.

Example 3.1. Let X = [0, 1] and A, B, C be fuzzy sets in X defined as follows:

$$A(x)=0.2, x \in [0,1];$$

$$B(x)=0.5, x \in [0,1];$$

$$C(x)=0.3, x \in [0,1].$$

Then $\delta = \{0,A,B,1\}$ and $\tau = \{0,C,1\}$ are fuzzy topologies on X. Let $f: (X, \delta) \to (X, \tau)$ be an identity mapping. Simple computations give $f^{-1}(C) = C \in ISSO(X, \delta)$, $f^{-1}(0) \in ISSO(X, \delta)$, and $f^{-1}(1) \in ISSO(X, \delta)$. Thus, f is fuzzy S* strongly semicontinuous. Clearly, f is not fuzzy continuous.

Example 3.2. Let $X = \{x, y, z\}$, and A, B, C be fuzzy sets in X defined as follows:

$$A(x)=0.3$$
, $A(y)=0.2$, $A(z)=0.7$;

$$B(x)=0.8$$
, $B(y)=0.9$, $B(z)=0.4$;

$$C(x)=0.8$$
, $C(y)=0.9$, $C(z)=0.5$.

Then $\delta = \{0, A, B, A \cap B, A \cup B, I\}$ and $\tau = \{0, C, I\}$ are fuzzy topologies on X. Let $f: (X, \delta) \rightarrow (X, \tau)$ be an identity mapping. We can easily get that $f^{-1}(C) = C$ is a fuzzy strongly semiopen set in (X, δ) . Thus, f is fuzzy strongly semicontinuous. Clearly, A and C are fuzzy strongly semiopen sets in (X, δ) . Since

$$A \cap C \not\leq (A \cap C)^{o - o} = (A \cap B)^{- o} = (A \cap B)^{\circ o} = A \cap B$$
,

 $A \cap C$ is not a fuzzy strongly semiopen set in (X, δ) , i.e. $C \not\in ISSO(X, \delta)$. Thus, f is not fuzzy S* strongly semicontinuous.

4. Preservation of some topological structures

Definition 4.1 [3,8]. A fuzzy set A is called a connected (strongly connected) set if A cannot be represented as a union of two separated (weakly separated) non-null sets.

Theorem 4.2. Every fuzzy S* strongly semicontinuous image of a fuzzy strongly connected set is fuzzy connected.

Proof. Let $f: X \to Y$ be a fuzzy S* strongly semicontinuous function and A a fuzzy strongly connected set in X. If possible, let f(A) be not fuzzy connected in Y. Then there exist two separated non-null sets B and C in Y such that $f(A)=B \cup C$. Put $E=A \cap f^{-1}(B)$ and $F=A \cap f^{-1}(C)$. Then

$$E \cup F = A \cap (f^{-1}(B) \cup f^{-1}(C)) = A \cap (f^{-1}f(A)) = A,$$

and

$$E^{\sim} \cap F = (A \cap f^{-1}(B))^{\sim} \cap (A \cap f^{-1}(C))$$

$$\leq A^{\sim} \cap (f^{-1}(B))^{\sim} \cap A \cap f^{-1}(C)$$

$$\leq A \cap f^{-1}(B^{\circ}) \cap f^{-1}(C)$$

$$= A \cap f^{-1}(B^{\circ} \cap C)$$

$$= A \cap f^{-1}(0_Y) = 0_X.$$

Analogously, $E \cap F = 0_X$. Again $E \neq 0_X$, in fact, if $E = 0_X$, then $A = F = A \cap f^{-1}(C)$. And so $A \leq f^{-1}(C)$, and $f(A) \leq F$. Hence, $B \leq C$, This is a contradiction. Analogously, $F \neq 0_X$. Thus, A is not a fuzzy strongly connected set in X.

Definition 4.3. A fuzzy topological space (X, δ) is called fuzzy compact (fuzzy *I*-compact) if for every cover $\{V_a: V_a \in \delta\}$ $(\{V_a: V_a \in ISSO(X)\})$ of X, there exists a finite subcover of X.

Theorem 4.4. Every surjection fuzzy S* strongly semicontinuous image of a fuzzy I-compact space is fuzzy compact.

Proof. Let $f: X \to Y$ be a surjection fuzzy S* strongly semicontinuous function of a fuzzy *I*-compact space X to a fuzzy topological space Y. Let $\{V_a: a \in J\}$ be a fuzzy open cover of Y. Then $f^{-1}(V_a) \in ISSO(X)$ for each $a \in J$, and $\phi = \{f^{-1}(V_a): a \in J\}$ is a cover of X. Since X is fuzzy I-compact, there exists a finite subset J_o of J such that $\bigcup \{f^{-1}(V_a): a \in J_o\} = I_X$. Now

 $I_Y = f(I_X) = f(\bigcup \{f^{-1}(V_a): a \in J_o\}) = \bigcup \{ff^{-1}(V_a): a \in J_o\} \leq \bigcup \{V_a: a \in J_o\}.$ Therefore, Y is fuzzy compact.

References

- [1] K.K.Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity, J.Math.Anal.Appl.82(1981)14-32.
- [2] S.Z.Bai, Fuzzy strongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets Syst. 52(1992)345-351.
- [3] S.Z.Bai, Strong connectedness in L-fuzzy topological spaces, J.Fuzzy Math. 3(1995) 751-759.
- [4] S.Z.Bai, W.L.Wang, Fuzzy non-continuous mappings and fuzzy pre-semiseparation axioms, Fuzzy Sets Syst. 94(1998)261-268.
- [5] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl.24(1968)182-190.
- [6] M.N.Mukherjee and S.P.Sinha, Irresolute and almost open functions between fuzzy topological spaces, Fuzzy Sets Syst. 29(1989)381-388.
- [7] S.Saha, Fuzzy δ-continuous mappings, J.Math.Anal.Appl. 126(1987)130-142.
- [8] G.J.Wang, Theory of L-fuzzy Topological Spaces, Press of Shaanxi Normal University, Xian, 1988)