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1. Preliminaries

Throughout this paper the letter N will denote the set of positive integers. If 4 is subset

of a topological space (X,7), we will denote by ¢/ A4 the closure of 4in (X,7).

A quasi-metric on a (nonempty) set X is a non-negative real-valued function d on
XxX such that, for all x, y, ze X : (i)d(x,y)=d(yx)=0 implies x=y; (ii)d(x,y) <
dx,z)+d(z,y). A quasi-metric space is a pair (X,d) such that X is a (nonempty) set and dis a
quasi-metric on X.

Each quasi-metric d on X induces a topology 7(d) on X which has as a base the
family of d-balls {Bd (x,r):xeX,r> 0} , where B,(x,r)= {y e X:d(x,y)< r}. Each
quasi-metric d on X also induces a conjugate quasi-metric d~', defined by
d”' (x,y) =d(y,x). -

By d’we denote the metric dvd™ (ied’(x, y)=max{d(x, y),d(y,x)}, for all
x,ye X). 4

Definition 1. A sequence {x,, }neN in a quasi-metric space (X,d) is called left
K-Cauchy if for each £>0 there is an n, € N such that d(x,,x,)<¢& for all
n,me N suchthat n, <n<m. |

The quasi-metric space (X,d) is left K-complete[3], provided that every left K-Cauchy
sequence in (X d) is convergent with respect to the topology 7(d). (X,d) is Smyth-complete
provided that every left K-Cauchy sequence in (X,d) is convergent in the metric space

(X.d"), (See[5,6]). Clearly, every Smyth-complete quasi-metric space is left K-complete.

A fuzzy set in the quasi-metric space (X,d) is a function from X into the unit interval
[0,1]. If 4 is a fuzzy set in X, then, for each x € X, the number A(x) is called the grade of
membership of x in 4. The r-level of A4, denoted by A4,, is defined by

A = {x e X:A(x)> r} if re(0,1], and 4, = {x e X :A(x) > 0}, where the closure is



taken in (X, d”).
Definition 2. A fuzzy set 4 in the quasi-metric space (X,d) will be called an
approximate quantity if for each r €[0,1], 4, is compact in (X, d*) and sup A(x)=I.

xeX

By W(X) we will denote the collection of all approximate quantities in the quasi-metric
space (X,d).

Definition 3. Let (Xd) is a quasi-metric space, 4,BeW(X), re[0,]]. Then we
define

P,(4,B)=inf{d(x,y):x€ 4,,y € B,}, P(A4,B)=sup{P.(4,B):r [01]}

D,(4,B)=H,(A4,,B,), where H is the Hausdorf distance;

D(4,B) = sup{D, (4, B): r € [0,1]},

We will use the following lemmas due [1] and proposition due[2].

Lemma 1. Let (X,d) be a quasi-metric space. Then, for each 4 e W(X) there exists
peX suchthat A(p)=1.

Lemma 2. Let (X d) be a quasi-metric space, 4,BeW(X) and xe A4, (such an x
exists by Lemma 1). Then there is y € B, such that d(x,y)< D,(4,B).

Lemma 3. Let (Xd) be a quasi-metric space and let 4,BeW(X) . Then,
P(4,B)= p,(4,B).

Lemma 4. Let (Xd) be a quasi-metric space, A€ W(X) and y € 4,. Then, for each
xeX, p(x,4)<d(x,y).

Lemma 5. Let (Xd) be a quasi-metric space and let 4eW(X). Then for each
x,ye X andeach re[0]], p,(x,4)<d(x,y)+p,(y,4).

Lemma 6. Let (X,d) be a quasi-metric space, 4e W (X ) and xe€ 4,. Then for each
BeW(X) andeach r€[0,]], p,(x,B)<D, (4,B)

Lemma 7. Let (X,d) be a quasi-metric space and 4e W (X). If p(x,4)=0, then
thereis ye clr(d_.){x} such that A(y)=1.

Proposition 1. Let (3(} d) be a quasi-pseudo-metric space and let {x,,}

neN

be a
sequence in X such that Zd(x,.,xm) <. Then {x,, }"E v is a left K-Cauchy sequence in

i=1
X.d).
Definition 4. A fuzzy mapping on a quasi-metric space (X,d) is a function F defined
on X, which satisfies the following two conditions:

(i) F(x)eW(X) forall xe X.

(ii) If z and a are points of X such that (F(2))(a)=1 and p(a,F(a))=0, then
(F(a))a) =1. |

Definition 5. We say that a fuzzy mapping F on a quasi-metric space (X,d) has a fixed



point if there exists ae X suchthat (F(a))(a)=1.
2. Main Results

Theorem 1. Let (X,d) be a Smyth-complete quasi-metric space, let F and G be fuzzy
mappings from X into W(X). If there exists a constant 4, 0 <A <1, such that for each
x,yeX.

D(F(x),G()) < hmax{d(x, ), p(x, F(x)), p(»,G(»)), 1)
(P(x,G) + p(y, F(x)))/2},
Then, F and G each have a fixed point.

Proof. Let x, € X .By Lemma 1, there exists an x, € X such that (F(x,))x,)=1.
By Lemma2 there exists an x,eX such that (G(x;)X(x,)=1 and
d(x;,x,) < D,(F(x,),G(x,)). Again we can find an x, € X such that (F(x,))(x,)=1
and d(x,,x;) < D(G(x,),F(x,)).

Continuing in this way we can produce a sequence {x, ), < X such that

(F@ ) *am) =1, (G(x)Nx,,,,) =L,n =012,

d(xz"ﬂ *X2ne2 ) s Dl (F(x2n )’ G(x2n+l ))a n=12,-- (2)
d(Xyy,X3p01) S Dy (G(xy,,), F(Xy,))sn =12, . 3)
We then have,

d(x,,%,) < D, (F(x,),G(x,)) < D(F(x,),G(x,))

< hmax{d(xo,xl),P(xo,F(xo)),P(x,,G(x, s (P(x,,G(x, ))"'P(an(xo)))/z}'
So, by Lemma 4,

d(x,,x,)< hmax{d(xo,x,),d(x,,xz),d(xo,xz)/2} = hd(xy,x,) .
Similarly, d(x,,x;)<hd(x,,x,),s0 d(x,,x,)<h*d(x,,x,).

Next we show by induction that

d(x,,x,,)<h"d(x,,x), n=12,-- )
In fact, by the assumptions it is obvious that (4) is true for n=1. Suppose that (4) is true
for n=k; we prove that it remains true for n=k+1.
If k is even, then from conditions (2) and (3) we have

d(X 415 %142) < Dy (F(x,), G(x,.,1)) = D(F(x,),G(x,,,))
< kmax{d (%) PO F(5)), P51 Gy o (PG G ) + Py, F 2, 2}
By Lemma 4, P(x,,F(x,))<d(x,,x,,,), P(xy,,G(xp ) Sd(X405%0,,)

P(x,,G(x,,)) < d(x,,%,,,), P(xy,, F(x,)) < d(xy,,,%,,,) . Hence,

d(Xy,15%,,0) < h max{d(xk s X s A (X X0 ) A (X 15 %p2) 5

(e X )+ A1 X00) + A (Fy %))/ 2}
= hd(x,,%,,,) S h-K'd(x,,%,) = h™'d(x,,x,). (5)

If k is odd we can similarly prove that (5) remains true.This completes the proof of (4).
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It follows from proposition 1, that {x,,} is left K-Cauchy sequence in (X,d). Hence,

n=1
there exists a unique point ze€ X suchthat d°(z,x,) >0 (n— ).
Applying inequality (1) we get
D(F(x,,),G(2)) < hmax{d(x,,, ,2), P(x,,,F(x,,)), P(z,G(2)),
(P(x,,G(2)) + P(z,F (x,,)))/ 2}.
Now, by Lemma 5, we have
P (2,G(2)) <d(z,x,,,)+ P (x,,,,G(2)) forall neN.
So, by Lemma 3 and 6,
P(z,G(2)) £d(z,x,,,) + D,(F(x,,),G(2)) < d(z,x,,,,) + D(F(x,,),G(2)) ©)
Moreover, by Lemma 4, P(x,,,F(x,,)) <d(x,,,%,,.,),
P(z,F(x,,)) <d(z,x,,,), because x,,,, € (F(x,,)),.
By Lemma 3, 5 and 6, | |
P(x3,,,G(2)) < d(X3s X300 ) + P(50,1,G(2)) S d (X3, X300) + DF (%,,),G(2))
from which it follows that
D(F(x,,),G(2)) < hmax{d(x,,, 2),d(x,,,%,,.),d(2,%,,,,) + D(F(x,,),G(2)),
(d(Xy,3 X3001) + D(F (x,,), G(2)) + d(2, x,,.,,))/ 2} = hO(F,G),
where, ®(F,G)=max{d(x,,,2),d(x,,,%,,.,),d(z,%,,.,) + D(F(x,,),G(z)),
(d(Xy>X301) + D(F(x,,),G(2)) + d(2,%,,,,))/ 2}.
Now there are several cases:
Casel.Foreach ne N, ®(F,G)= d(x,,,2).
Case2. Foreach ne N, ®(F,G)=d(x,,,x,,.,) _
Case3. Foreach ne N, ®(F,G)=d(z,x,,,)+ D(F(x,,),G(2)).
Case4. Foreach ne N,
O(F,G) = (d(x5 %3.1) + D(F(x,,),G(2)) +d(2,%,,,,)) /2.
In casel, from d°(z,x,) —> 0, it follows that
D(F(x,,),G(z)) > 0.By (6), P(z,G(z))=0.
In case2, since {x,, }:;1 is left K-Cauchy sequence, we obtain that d(x,,,x,,, ) = 0.
So,
D(F(x,,),G(2)) = 0. From (6) and the fact that d*(z,x,) = 0, we deduce that
P(z,G(2))=0.
In case3, we obtain that (1-h)D(F(x,,),G(z)) <hd(z,x,,,) . Hence,
D(F(x,,),G(2)) = 0(n — ). Again by (6), P(z,G(z))=0.
Finally, in case4, we obtain
(2— B)D(F (x,,),G(2)) < H(d(x,,,%5,.,) + d(2,3,.,))
Hence, D(F(x,,),G(z)) = 0(n - ). By (6), P(z,G(z))=0



Therefore, by Lemma 7 there exists a, € ¢l
shall prove that q, is a fixed point of F.

Indeed, since (G(z))(a,) =1,P(a,,G(2))=0.
We also have that d(z,q4,)=0,and P(z,G(z))=0, as we have proved.

Applying inequality (1) we get

D(F(a,),G(2)) < hmax{d(a, ,2),P(a,, F(a))), P(2,G(2)),

(P(a,,G(2))+ P(z,F(a,)))/ 2}.
It follows, from the preceding relations, that
D(F(a,),G(2)) < hmax{P(a,,F (@), P(z,F(a,))/2 }. ™

By Lemma 1 and 2, there exists ce X such that

(F(a)Xe)=1 and d(a;,c) < D,(F(a,),G()) < D(F(a,),G(2)).
Thus, by Lemma 4, P(a,,F(a,)) <d(a,,c) < D(F(a,),G(2))

and P(z,F(a,))<d(z,c), because (F(a,))c)=1.
So, P(z,F(a)))<d(z,a))+d(a,,c) < D(F(a,),G(2)).
Then, by hypothesis (7), we have

D(F(a,),G(2)) < hD(F(a,),G(2)) . We conclude that D(F(a,),G(z)) =0 and,
consequently, d(a,,c)=0. Thus, a, =c, and (F(a,))a,)=1. By Definition 4, a, is a

{z} such that (G(z)Xa,)=1. We

e

fixed point of F. Similarly, we can shown G has a fixed point. This completes the proof
of Theorem 1.

Theorem 2. Let (Xd) be a left K-complete quasi-metric space and F and G be fuzzy
mappings from X into W{(X) satisfying

D(F(x),G(y)) < H{ P(x, F(x))P(y,G(»)]'"?
forall x,ye X and 0<h<1.Then, Fand G each have a fixed point.

Proof. Let x, € X . As in the first part of the proof of Theorem 1, we can construct
a sequence {x,}-  in X, such that

(F (X2 N*2s1) =1, (G(X2001 )N (X2002) =1,m=0,1,2,--- .-
and  d(Xyp015¥3002) S Dy (F (30 ), G (X0 o = 12,0,

(%30 X301) S DGty ), F (X3 )1 = 12,01+
By Lemma 2, we have

d(x,,%,) < D,(F(x,),G(x,)) < D(F(x,),G(x,))

1

< ——1; D(F (x,),G(%,)) < VA[P(xo, F (x0)) P(x,, G(x, ]2 .

By Lemma 4, we have

1
d(x,,x,) < Vhld(x,,x)d(x,,x,)]? .



So, d(x,,x,) < hd(xy,x,).
Similarly, we can find x;€eX such  that (F(x,)(x;)=1 and
d(x,,xy) < D,(G(x,),F(x,)) < D(G(x,), F(x,))

1
< —1;1- D(G(x,), F(x,)) < \/Z[P(x, ,G(x ) P(x,,F(x,)]?.

By Lemma 4, we have

d(xy,%,) < VR[A(x,,%,)d(x,, %) . S0, d(x,,x,) < hd(x,,x,) < Bd(xy,%,)

In general, d(x,,,x,,,)<hd(x,,x,,)for n=0,2---, where (F(x,,,))(X3,.)=1,
(G(xpp1)Nx2,) =1 are such that d(x,,,,x,,)< —'l"D(F (x22),G(xy,,)) and
consequently we obtain d(x,,x,,,) <h"d(x,,x,) forall neN.

It follows from proposition 1, that {x,}°

is a left K-Cauchy sequence in (X,d).
Hence, there exists a point ze€ X ,suchthat d(z,x,)—>0.
By Lemma 3, 5 and 6 it follows, similar to the proof of Theorem 1, that
P(z,F(2)) £d(z,x,,) + F(%,,, F(2)) <d(z,x,,) + D,(G(x,,,), F(2))

<d(z,x,,) + D(G(x,,.,), F(2)) t)
for all ne N.But by Lemma 4 get

D(G(x,1), F(2)) < H{p(%3,1, G(¥,, ) P(z, F(2)? < Hd(xy,;, %, )P(2, F(D)]2.
From (8) we get

P(z,F(2)) < d(2,%,,) + Hd(x,,.,,%,,)P(z, F ()] .
When n— o, we have P(z,F(z))<0, which give P(z,F(z))=0.
By Lemma 7, there exists a, € cl,, &) {z} such that (F(z)Xa,)=1.

Similarly

P(z2,G(2)) £ d(z,x,,,) + B (x,,,,G(2)) <d(z,x,,,,) + Dy (F(x,y,),G(2))

< d(2,X3,1) + D(F(x,,),G(2)) | ©)

forall ne N.But by Lemma 4 get

D(F(x,,),G(2)) < HP(x,,, F(x,,))P(z,G(2)))* < Hd(x,,,%,,,1)P(z,G(2)]* -
From (9) we get
P(2,G(2)) < d(2,%,,,,) + Hd(x,,,%,,. ) P(2,G(2))]*.

When n—> o, we have P(z,G(z)) <0, which give
P(z,G(z))=0 (10)
By Lemma 7, there exists a, € clr( JEN {z} such that (G(z))a,)=1.

We shall prove that a, is a fixed point of Fand a, is a fixed Point of G.



Indeed, since

D(F(2),G(a,)) < {P(z,F(z))P(a,,G(q, ))]% , it follows that
D(F(2),G(a,)) =0, because p(z,F(z))=0.
On the other hand, by Lemma 1 and 2, there exists b€ X such that (G(a,))}b)=1
and d(a,,b) < D,(F(2),G(a,)) < D(F(z),G(a,)).
Therefore, d(a,,b)=0.Thus, b=gq,,and (G(a,)Xa,)=1.
By Definition 4. a, is a fixed point of G.
Similarly, we can shown a, is a fixed point of F. This completes the proof of

Theorem 2.

If (X,d) is a quasi-metric space and A4,B e W(X), we define, as in the metric case,

5(A4,B) = sup 8,(4,,B,), where &,(4,,B,)=sup {d(a,b):ac A, and be B.}.
ref0,1]

Clearly, D(A,B)<6(A4,B) forall A,BeW(X).
Hence, we immediately deduce from Theorem 2 the following:

Corollary. Let (X,d) be a left K-complete quasi-metric space and F and G be fuzzy
mappings from X into W(X) satisfying the following condition: For any x,y in X

1
S(F(x),G(y)) < W P(x, F(x))P(y,G(y)))? , where 0<h<1.
Then, F and G each have a fixed point.
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