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Abstract

According to [8,12,13, 23] ,the op-
timization models with a linear ob-
jective function subject to fuzzy re
- lation equations is decidable. Al-
gorithms are developed to solve it.
In this paper, we propose a proced
ure for separating the decision var-
iables into basic and non-basic va-
riables .A complementary problem
for the original problem has been
defined .Based on the structure of
the feasible domain and nature of
the objective function , individual
variable is restricted to become

bivaued .An algorithm is proposed.

Two examples are considered to
explain the procedure.

Keywords: Fuzzy relation equatio-
ns: feasible domain, linear functi-
on, continuous t-norm, Basic and
non-basic variables.

1. Introduction

We consider the following general
fuzzy linear optimization problem
minimize Z = ¢1X; +..... CpXm
subject to X 0A=Db (D
. 0<x;<1

A= [a;], 0<a;<1, be mxn-
dimensional fuzzy matrix,
b=(b;),0<b;<l1,jel, ben-
dimensional vector,

¢= (C,...., cm) € R™ be cost (or
weight) vector, x = (x;), 1 €I, be
m- dimensional design vector,
I={1,....m} andJ = {1,....,n} be
the index sets and ‘o’ is Sup-T
composition, 7 being a continuous
t-norm .More literature on Sup- T’
composition can be found in [2,3]
.The commonly used continuous t-
norms are
()T (a, b) = min (a,b), (2)
(ii)T (a,b)=product (a, b) =a.b, (3)
(iii)T (a, b) = max (0, a+b-1). (4)
Let X (A,b)={ x=(X1,...-.Xm) €
R™ |x0A=b,x e [0,1]V i el}
be the solution set.
We are interested in finding a
solution vector x=(Xi,...,Xm) € X(A,
b) which satisfies the constraints
Sup—T(Xi ’ aij) = bj , Vj €J (5)

iel
and minimizes the objective
function Z of (1).
Now we look at the structure of
X(A, b).Let x' x* € X(A,b) . x! <x?
if and only if x'; <x% Vi eI Thus,
(X (A, b), <) becomes a lattice.
Moreover,x € X(A, b) is called
maximum solution if x<x for all x
€ X(A, b). Also,x € X(A, b)is
called a minimal solution, if ¥<x
implies x = ¥,V x €X(A,b). When
X(A, b) is non- empty, it can be



completely determined by a unique

maximum and a finite number of

minimal solutions [1,7,8,13].

The maximum solution can be

obtained by applying the following

operation:

X =A<>b=[1nf(aij<> bj )]iel (6)
jed

where 0 is inverse operator of T.
The inverse operators of (2), (3),
(4) can be found in [22] as given
below;

I if a;<b,;

aij <> bJ ={ b, ifay=b; (7)
- 1 if aiij,-

al_l <> bj { b;/ay if a;2b; (8)
_ 1 if aijS bj

ajj 0 bJ ( l-a,+b; i ay>b; ®

i

Let X (A, b) be the set of all
minimal solutions. The X (A ,b)
can be looked as X (A ,b) =

U {xe X|z<x<z1}.(10)
¥eX(A,b)
Corollary 1. X (A, b) c X(A, b).
We list the following useful results
established in [8,13].
Lemma 1. If x € X(A ,b), then
for each j €] there exists iy € I
such that T(Xio,aioj) = bj and T(Xi,
a;))< b; otherwise.
Proof: Since xo A =b, we have
Sup -T(x;,a;)=b; for j € J.

iel
This means for each j ¢ J,

T(Xi ,aij) < bj .
In order to satisfy the equality
there exists at least one i € I, say
i(), such that T(Xio,aioj) = bj .0
Proposition 1. Let T be the
continuous t-norm and a,b,x €

[0,1], then equation T (x,a) =b has
a solution if and only if b<a.
Definition 1. A constraint j, € J is
called scares or binding constraint,
ifforx eX(A,b)andi € I, T(x;,
3jj0) = byo.

Definition 2. For a solution x

e X(A, b) and ip €], x is called
binding variable if T(xj, ajo;) = b;
and T(x;, a;) <bj, for alli € L.
Let X (A, b) # ¢. Define

Ij = [ 1€l | T(fi,aij) = bj ,aiijj },
for eachj €J. (11)

Lemma 2. If X(A, b) # ¢, then I; #
o,v] €l.

Proof: Proof is consequence of
lemma 1.0

Lemma 3. If || Ijl| = 1, then x= x;
=ajj ObJ for i EIj .

Proof: Since x; ,i €1 ,is the only
variable that satisfies the constraint
j, it can take only one value equal
to %, , determined by (6) for i1 €]

and hence the lemma.o

Lemma 4. For i belonging to I
and Ij' s aijObj = aij'Obj'.

Proof: Since x; is the only variable
that satisfies the constraints j and
j',i.e. T(Xi, a/ii )= bj and T(Xi, aij')=
bj'. Therefore, X; = aijObj = aij'Obj'.D
Solving fuzzy relation equations is
an interesting topic of research[1,4
-11,13-21,23-25].Studies on fuzzy
relation equations with max-T-
norm composition or generalized
connectives can be found in [18]
.According to Gupta and Qi [10]
performance of fuzzy controllers
depends upon the choice of T-
operators. Pedrycz [18] provided



the existence condition for max-T-
norm composition. A guide line
for selecting appropriate connector
can be found in [24]. Extensive
literatures on fuzzy relation equa-
tions with max-min composition
[25] can be seen in [19]. Recently,
Bourke and Fisher [4] studied a
system of fuzzy relation equations
with max-product composition. An
efficient procedure for solving
fuzzy relation equations with max-
product can be found in [13].

Fang and Li [8] made seminal
study on fuzzy relation equations
based on max-min composition
with linear objective function.
They considered two sub problems
of the original problem based on
positive and negative costs coeff -
icients. One sub problem with
positive costs, after defining equi-
valent 0-1 integer programming
problem, has been solved using
branch-and-bound method with
jump tracking technique. Related
developments regarding this can
be found in [12,15,23]. Wu et.al
[23] rearranged (in increasing ¢
and b) the structure of the linear
optimization problem and comp-
uted initial upper bound for equi-
valent 0-1 integer programming
problem of original problem. They
solved the 0-1 integer programmm
ing problem by backward jump-
tracking branch- and -bound
scheme.

Solving a system of fuzzy relation
equations completely is a hard

problem. The total number of
minimal solutions has a combin-
atorial nature in terms of problem
size. Further more, general branch-
and-bound algorithm is NP-
complete. An efficient method is
still required..
In this paper, we propose a proce-
dure that takes care of the charact-
eristics of feasible domain which
shows that every variable is
bounded between a minimal and
the maximal values.We can reduce
the problem size by removing
those constraints which bound the
variables(according to definition
(2) Clearly, none of the variables
gets increased over its maximum
and gets decreased below zero
(i.e. assumed minimum). These
boundary values can be assigned to
the variable in order to improve
the value of objective function and
to satisfy the functional constraints
In section 2, we describe the proc-
edure and give step by step algori-
thm. In section 3, we consider two
numerical examples and solved by
using the algorithm given in
section -2. Tabular computation of
algorithm is proposed.
Conclusions are given in the last.
2. Solution Analysis and
Algorithm
Let x e X(A, b) # ¢. Define
Ij = [ i€l I T(fi,aij) = bj ,aiijj },

Vj el (12)
J; ={j€J| T(:?i,aij) =bj ,aiijj },
Viel (13)



Notice that the non-negative
variable

Xi<x, Vi€l (14)
has an upper bound.

We write (14) as

X = x-y;, Viel (15)

and refer x; and y; as complem
entary decision variables.
Whenever

(1) x; =0,then y; =%, , and

(11) x; =x, ,then y;=0.

Thus, 0<x <& implies0O<y <%.
Rather than taking each variable y;
€[0, x ], we consider that the each

of y;’s takes its values from the
boundary values 0 (lower bound)
and/or x, (upper bound). This

reduces the problem size, also. The
original problem (1)can be defined
, in terms of complementary
variables, as
minimize Z = Z, - ic,. Y,

i=l]
subject to
Inf—T(yi,aij) =0, \VjEJ, (16)

iel,

vi €{0,x } Viel.
where, Z, = Em:cif,
i=]

Lemma S. If a;>0, some y; have to
become zero for solving (16).
Proof: T is continuous t-norm.
0<yi<% Forieljand jeJ;,
yi=0 = T(yi,a;)=0
— Inf-T(yi ,aij)=0.
iel,

Again, Inf -T(y; ,2;;)=0 =
iel,;
T(yl ,aij)=0 , 3 iGIj.

Since a;>0, therefore, y; = 0 for
some iel. O
Lemma 6. If ¢>0, selecting y; =%,

improves the objective function in

(16).

Proof: Zo > Zo- Yy, =2> Z, -
i=1

m
Y c% 2 minZ.o
i=1

We call y;, as leaving basic
variable, if it takes the value % to

improve Z, and we call it as
entering non-basic variable, if it
takes the value zero to satisfy the
constraint(s).From (14), it is clear
that the membership grade x; of a
fuzzy number can not exceed ..

Solution set (10) is a poset,
Sanchez [21]. The o bjective of
optimization problem is to find
minimum value of Z. Intuitively,
minimum Z can be achieved with
maximally graded (%) fuzzy
numbers, if costs are negative,
where as, at minimally graded (%)
fuzzy numbers, if costs are
positive . So, the technique is to
select complementary variables y;
from the boundaries 0 and %, so as

it either improves the initial value
Z, or satisfies the constraint(s)
.Every complementary variable
has to follow either of two rules;
()Rule for selecting entering non-
basic variable, i.e.choose y;=0 in
order to satisfy the constraints of
Ji..(ii)Rule for selecting leaving
basic variable, i.e. choose y;i=%, in

order to improve initial Z-value.



Procedure, adopted, is to find yZ,
and y; such that y=(y%,, %) and

y={ % Viel (17)

Yieys

e =1Yy; | it satisfies the constraints
of (16) for j €J; ) is the set of
entering non-basic variables and
V5= 1{¥il¥i  yys } is the set of
leaving basic variables.
Let c;, and c-denote the costs of
variables yy,and y; respectively.
Thus, cost vector ¢ = (cZ, ,ct).
To be practical, ay; € y%, is
selected in such a way that it has
least effect on Z-function and as
well as satisfies the constraints I,
jeJi. The following steps are
involved in generating the set of
entering non-basic variables.
Algorithm I
(1))Compute the value set

V={V;| V= ¢; % foreachiel}
(ii) Generate index set

I'={k| Vi =min,, (V))}
(iii) Define
J={jel|kelj}, vkel.
(iv) Construct set {y,| keI}c y%,.
(v) Select the values for y,, Vkel,
according to (16) .
(vi) Remove the row(s) keI and
column(s) j €J.

(vii) Define 7=I\Tand J=J\ Ul

(viii) Set I«7 and J«—J .Go to (i).
(ix) The generated
yus =9 {¥k | y=0}.

Note: 1. Since x;+ y;=%,, Viel.
Structure of Ij and J; will remain
unchanged

2.If 1={i|y;=0,1 el},then

| I||< min (m,n).

This will help us in computing the
complexity of the algorithm.

We give basic algorithm to obtain
optimal solution of the problem (1)
4. The basic algorithm

Step 1: Finding the maximum
solution of system of FRE in (1).
Consider the existence proposition
2 and compute ¥ according to (6).
Compute

¥ = A0b = [Inf (a; 0 b)lie
jed
Step 2: Test the feasibility.
If ¥0A =bthen feasible.
Else, infeasible and stop!
Step 3: Compute index sets.
Compute ‘

Ij={181' T(iisafij)=bj }’ VjeJ

andJ;={j eJ|iel; },v iel .

Step 4: Problem transformation.
Transform the problem(1),given in
variables x,into the problem(16) in
volving complementary variable y.
Step 5: Generating entering non-
basic variables.

Generate the set y:, = o {yl
yx=0}, using algorithm L.

Step 6: Generating leaving basic
variables.

Generate the set y:={y;| yi

3 yle}' SetYi= fw VYi € ys'

Step 7: Generating complementary
variables.



Complementary decision vector
y* = (YI{;/B ’ylé)-
Step 8: Generating the decision
variables.
Compute the decision vector X,
according to (15).

ie. x =% -y Viel.
Step 9: Computing optimal value
of objective function.

Z'= Z- ZC§Y§
3. The illustration

Following two examples are consi-
dered to illustrate the procedure.
Examplel. Solving problem (1)
with t-norm (2) and inverse
operator (7).
Letm=6,n=4,c=(3,4,1,1,-1,5),
b=(0.85,0.6,0.5,0.1) and

05 02 08 0.1
08 02 08 0.1
09 0.1 04 0.1
03 095 0.1 0.1
08 0.1 0.1 0.1
(04 08 0.1 00]

Stepl: Finding the maximum

solution.

x¥=(0.5,0.5,0.85,0.6,1.0,0.6).
Step2: x0 A = b.Solution isfeasible.
Step 3. Index sets I;’s and J;’s are
Il={3’5}312={4’6}a13={ 1’2},I4={5}'
J1={3}1 J2 = {3}9 J3 = {1}9 J4 = {2}
, Is={1,4},Js = {2}.
Step 4: Transformed problem is
min Z = Zy-3y-4y2-y3-Yatys-5Ye
, Zy = 6.95, subject to

Inf -min (y;, aij) = bj , =14
i=1,....6

Y1 € {Oa 0'5}’ Y2 € {0’ 05}: Ys € {0
0.85},y4 €{0, 0.6}, y5 €{0, 1.0},
yes €{0, 0.6}.

Step 5: Generating the sety,, . This
is shown via table.

LIL|L L]V
! ]
T, 1 1.5
1, 2 2.0
1, |3 0.85
IL,| [4] | Tos
Is |5 5 [-1.0—
.| |6 3.0

Minimum (V) = -1.0 corresponds
to ys. Setting ys = 0, satisfies the
constraints of Js = {1,4}.Remove
row 5 and columns I, , I; from the
table. Since J; becomes empty,
therefore row 3 will disappear.

The next table is
L (I3 |V
l
5 1 1.5
1, 2 (2.0
14 4 0.6—
Js 6 3.0

Minimum (V) = 0.6 corresponds to
ys . Setting y, =0 satisfies the
constraint of J, = {2}. Removing
row 4 and column I, from the
table. The reduced table is

I |V

l
Ji 1 |15«
Jo 12120

Minimum (V) =1.5 corresponds to
y1. Setting y; = 0 satisfies the
constraint of J; = {3}.



The generated y;;, = (¥, ¥4, ¥5) =

(0,0,0).

Step 6: Generating the set ..
¥5=(¥2 ¥3,¥ ) =(0.5,0.85,0.6)
Step 7:y =(0, 0.5, 0.85,0, 0, 0.6 )

Step 8: x =(0.5,0,0,06,1.0,0)
Step 9: Z' = 6.95 -5.85 = 1.10.

Example2. Solving problem (1)
with t-norm (3) and inverse

operator (8). Letm = 10and n = 8.
¢=(-4,3,2,3,52,1,2,5,6)

b =(0.48, 0.56, 0.72, 0.56, 0.64,

0.72,0.42, 0.64) and

A=

0.6
0.5
0.1
0.1
0.3
0.8
0.4
0.6
0.2
0.1

02
0.6
0.9
0.6
0.8
04
0.5
0.3
0.5
0.3

(.5
0.9
04
02
0.8
0.1
0.4
0.4
a7
0.6

03
0.5
0.7
0.5
0.8
0.1
0.8
0.3
04
0.6

0.7
0.8
0.5
04
0.3
02
04
0.1
0.9
0.6

0.5

0.9
0.7
0.1
0.5
0.8
0.7
0.2
(.9
0.4

02
0.3
04
0.7
0.5
0.8
0.3
0.5
0.7
04

Step 1: Finding the maximum
solution.

x =(0.8, 0.8, 0.622, 0.6, 0.7,

0.525, 0.7, 0.8, 0.6, 0.8).

Step 2: zaq4 =b. Solution is

feasible.

Step 3: Index sets [;’s and J;’s are

0.8
0.8
0.7
0.5
0.8
0.3
0.4
0.7
0.2
0.8

Step 4: Problem (1) can be
transformed to become
min Z = Z) +4y,-3y,-2y3-3y,-5y s
2y6-y71-2¥5-5yo-6¥10 ,» Zo = 16.894
subject to
Ii‘;!{‘ (vi.a;))=0,

Yie {os 0-8}’ < {0! 0'8}! Y; € {0'
0.622}, ys €{0,0.6},ys {0, 0.7},

v jel

Y6 € {Oa 0*525}3 ¥ & {0, 0.7},
¥g € {U, 0.8},}79 € {0. 0'6},

[1={ 158}312—':{335}’13={2}Jl4={537}!
[5={2} :l6={ 2}1]7={4i639 } yt8={ 1 92- 1

0}

h={1,8}, J,=1{3,5,6,8},);=

{2}Ja= {7}, Js={2,4},J6= {7},
Jr={4}Js ={1},Jo = {7}, J10 = {8}.

constraint of I, = {1,8} .After

removing the rows 1,8,10 ( since J;

and J;, becomne empty ) and

columns 1 and 8, above table takes
the followi

form

L

I3‘

L
L

Is

Is

I |V

I

2

2

2

24

J3
J4

4 1.8

1.244

Js

135

yio €{0, 0.8}.

Step 5: Computing the set =, . A
| L|L | LL L[| |[Ig |V

L 1

I |1 1 [-32¢
1, 2 22 2 |24
3 3 1.244
daf Lo L L L] (4] |18
Js 5 5 3.5
J6 6 1.05
J; 7 0.7
Js 18 | | | | | 1 |16
Jy 9 3.0
{10 110 [ 4.8
Selecting v, = 0 satisfies the




Js 6 |1.05

J7 7 0.7

Jg 9 (3.0

Setting y; = 0 satisfies the
constraints of J; = {4).Delete row

7 and column 4. Reduced table is

L |Is|l [I; |V
l

I 2 122 24
J3 |3 1.244
J4 4 |18
Js |5 3.5
J6 6 | 1.05«
Jo 9 13.0

Set y¢ = 0.This satisfies the
constraints of J¢= {7}.Deleting the
corresponding rows and column,

table reduces to become

L | |Is|lg |V

l
I 2 212 |24
J3 |3 1.244«
Js |5 3.5

y3 =0 satisfies the constraint of J; =

{2}.After removing the rows and

columns, above table reduces to

become
Ih |Is|lg | V
! 10l

Jo 12 (2112 |24«

y2 = 0 satisfies all the remaining
constraints of J, = {3, 5, 6 }.
yus = (Y15 Y2 ¥3, Y6, y7) = (0, 0, 0,
0,0)
Step 6: y;= (¥4, Y5, Y8, Y9 Y10)
=(0.6, 0.7, 0.8, 0.6, 0.8).
Step 7:y = (0, 0, 0, 0.6, 0.7, 0, 0,
0.8,0.6,0.8). |
Step 8: x =(0.8, 0.8, 0.622, 0, 0,
0.525,0.7,0,0,0).
Step 9:2'=16.894— 14.700 = 2.194.
6. Conclusions
This paper studies a linear
optimization problem subject to a
system of fuzzy relation equations
and presents a procedure to find
the optimal solution. Due to non-
convexity of feasible domain,
traditional methods, viz, simplex
method etc. can not be applied.
Procedure, adopted here, finds a
way of separating the set of
decision variables into basic and
non-basic variables and evaluates
their values. Since every binding

variable is bounded and has



discrete behavior, because of non-
convexity, they can assume only
boundary values of the interval in
which they lie. In terns, we define
the complementary variables and
hence the complementary optim-
ization problem. Algorithm is
developed to solve this complem
entary problem. Significantly, the
whole procedure can be presented
in a table and time complexity is
lesser.
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