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1. Introduction

The concept of fuzzy sets was first introduced by Zadeh [19]. Bounded and convergent se-
quences of fuzzy numbers were introduced by Matloka [11]. Matloka show that every convergent
sequence of fuzzy numbers is bounded. Later on sequences of fuzzy numbers have been discussed
by Nanda [13], Nuray and Savas [15], Nuray [16], Kwon [8], Savas [17], Bilgin [2], Basarir and
Mursaleen [1,12], Fang and Huang (4] and many others.

The natural density of a set A of positive integers is defined by

o1
6(A) =lim=|[{k<n:ke 4}|

where |{k < n: k € A}| denotes the number of elements of A C N does not exceeding n [14]. It
is clear that any finite subset of N have zero natural density and 6 (A°) = 1—6 (A). If a property
P (k) holds for all k € A with § (A) = 1, we say that P holds for almost all £, that is a.a.k.

The concept of statistical convergence was introduced by Fast [5]. Schoenberg [18] studied
statistical convergence as a summability method and listed some of elementary properties of
statistical convergence.

A sequence (z3) is said to be statistically convergent to L if for every ¢ > 0,
6 ({k € N: |z — L| > €}) = 0. In this case we write S — limzy = L.

Let C(R") = {A C R": A compact and convex}. The space C' (R") has linear structure
induced by the operations A+ B = {a+b:a€ A, be B} and M= {da:a€ A} for A,B €
C (R") and A € R. The Hausdorff distance between A and B of C (R") is defined as

600 (A, B) = max {zggggg o~ ol sup i o - bu} .

It is well kwon that (C (R"), ) is a complete ( not separable) metric space.

A fuzzy number is a function X from R" to [0, 1] which is normal, fuzzy convex, upper semi-
continuous and the closure of {z € R" : X (z) > 0} is compact. These properties imply that for
each 0 < a < 1, the a— level set [X]* = {x € R*: X (z) > a} is a nonempty compact convex
subset of R™, as is support X°. Let L (R™) denote the set of all fuzzy numbers. The linear



structure of L (R") induces the addition X + Y and scalar multiplication AX, A € R, in terms
of a— level sets, by

X +Y]"=[X1*+[Y]*  DX]*=AX]"

foreach0<a<1.
Define, for each 1 < ¢ < o0,

dg (X,Y) = ( /0 b (X"‘,Y"‘)qda> v

and doo = SUp deo (X, Y?), where 8 is the Hausdorff metric. Clearly d (X,Y) = qlixrolo dq (X,Y)
0<a<l g

with dy < d, if ¢ < r. Moreover d, is a complete, separable and locally compact metric space
[3]. Throughout the paper, d will denote dy with 1 < g < c0.

By alacunary sequence § = (k) ;r =0, 1,2, ..., where kg = 0, we mean an increasing sequence
of non-negative integers with h, = (k. — kr—_1) — 00 as r — o0o. The intervals determined by
6 will denote by I, = (ky-1,k,] and g, = ka_Ll Lacunary sequence have been discussed in
[2,6,7,9,10,15,16].

2. Definitions

Definition 2.1. Let X = (X) be a sequence of fuzzy numbers. A sequence X = (X})
of fuzzy numbers is said to be A2-bounded if the set {A?Xy : k € N} of fuzzy numbers is
bounded and A%— convergent to the fuzzy number Xy , written as lilrcn A%Xy = Xg , if for

every ¢ > 0 there exists a positive integer mg such that d (A2Xy,Xo) < € for n > ng, where
A2X = (AXy — AXg41) and AX = (Xx — Xiy1). Let m (Az) and ¢ (Az) denote the set of all
A?— bounded sequences and all A2— convergent sequences of fuzzy numbers, respectively.

Definition 2.2. Let 8 = (k,) be a lacunary sequence and let X = (Xj) be a sequence of
fuzzy numbers. A sequence X = (Xj) of fuzzy number is said to be lacunary A2—statistically
convergent to a fuzzy numbers X if for every € > 0

. -1 ) 2 _
,.l_lfgohr |{k € I : d (A Xy, Xo) > €}| =0.
In this case we write X — Xp (Sg (A2)) or Sp — lim A% Xy = X.

The set of all lacunary A?—statistically convergent sequences is denoted by Sy (AQ) .
In the special case § = (2"), we shall write S (Az) instead of Sy (A2) .

Definition 2.3. Let 8 = (k,) be a lacunary sequence and let X = (Xj) be a sequence of
fuzzy numbers. The sequence X is said to be lacunary strongly Azz,—summable if there is a fuzzy
number X such that

lim At sz: d (A%X, Xo)? = 0.
€I,

In this case we write X — Xo (Ng (Agg) or Ngp — lim A%X), = Xo. We shall use Ny (A2) to
denote the set of all lacunary strongly Ay —Cesaro convergent sequences of fuzzy numbers.
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In the special cases § = (27) and p = 1 we shall write |0 (A2)| and Np (A2) instead of
Ng (A2), respectively.

It can be shown that if a sequence of fuzzy numbers A%—convergent to fuzzy number Xy,
then it is A%—statitically convergent to fuzzy number Xj, but the converse does not hold. For
example define X = (Xj) such that

A ifk=n? n=12...

2y _
AKX = { 0, otherwise

where A is a fixed fuzzy number. Then S — lim A?Xy = A and lim A2X} # A.
3. Main Results

In this section we prove some results relating to the above sequence spaces.

Theorem 3.1 Let {X;} and {Yx} be sequences of fuzzy numbers.

i) If Sp — lim A%2X} = X and ¢ € R, then Sp— limcA%2X; = ¢ X,

ii) If Sp —lim A2X), = Xo and Sp— lim A%Yj = ¥, then Sp —lim (A2Xy + A%Y) = Xo + Yo

Proof. i) Let a € [0,1] and ¢ € R. Let A2XE, A%Y®, X§ and Y be a level sets of A2Xy,
A?Yy, Xo and Yy, respectively. Since 6o (CA2X,?,CX8‘) = |c| 600 (Asz,X(‘,"), we have

d (cAsz,ch) = |c|d (Asz,Xo)
For a given € > 0 we have \
1
ol

le]

(ke L d(eA™Xy,eXo) 2 e} < Hk € I, : d (A2X;, Xo) > i}.
T

Hence Sg— limcA2X, = ¢ Xo .
ii) Suppose that Sg — lim A%2X;, = X and Sp — lim A%Y;, = Y. Firstly, we have

boo (A2XE + AR, XE +YF) < 600 (ATXE + A2V, A?YE + X§)
+600 (A%Yy + X§, X + Y§)
boo (A2XE, XE§) + 600 (A2YR, YE) .

By Minkowski’s inequality we get
d (A2 Xy + A%Yk, Xo + Yo) < d (A%Xk, Xo) + d(A%Y, Yo)
Therefore given ¢ > 0 we have,
hi, [{k € I : d (A% Xy + A%Y%, Xo + Vo) > €}

< 7}— [{k € I : d (A%Xy, Xo) + d(A%V4, Yo) > €}
1

<
= &

{k € I, : d(A% Xy, Xo) > g}] +hi,

kel da,v) > g}’ .

Hence Sg— lim (A2X;c + A2Yk) = Xo + Yp.



Theorem 3.2. ¢ (A?) and m (A?) are complete metric spaces with the metric

p(X,Y)p = d(X1,Y1) +d(X2,Y2) +supd (A% X, A%Y;)
n

and Ny (Ag) is a complete metric space with the metric

1
4
§(X,Y)5 =d(X1,Y1) +d(X2,Y2)+sup (h‘IZd (A%X;, A%Y;)P ) , 1< p< oo
i€l,

Proof. We shall prove only for the space Ny (Az) The others can be proved by the same way.
Let (X™) be a Cauchy sequence in Ny (Az) where X" = (X7'), = (X7, X%,...) € Ng (AIZ,) for
each n € N. Then

b1 O

§(X™, X™) , =d (X, X7 )+d(X2,X5")+sup (h‘1 > d(a2xy, ATXmP ) — 0, as m,n — oo.
i€l

Hence we obtain

d(X7,Y;™) — 0, as m,n — oo, for each i € N.

Therefore (X7'), = (X}, X2,...) is a Cauchy sequence in L (R). Since L (R) is complete, it is
convergent

lim X! = X;
n

say, for each i € N. Since (X™) is a Cauchy sequence, for each £ > 0, there exists ng = ng ()
such that

0(X™, X™)p <€ for all m,n > ng.

Hence d (X7, XT") < ¢, d(XF,X5") < € and h7'Y ;) d(AZXP,A2XMP < P forallr € N
and for all m,n > ng. So we have

limd (X, X[") = d(X},X1) <&, Emd(X3,XF") = d(X§, Xa) <e
and

: -1 2yn 2m — p-1 2yn A2v.\P p
lim h; gdAX ,AZX] h; gdAX,,AX,) <e

for all € N and n > ng. This implies that § (X", X), < 3¢, that is X™ — X, n — oo, where
X = (X;). Since

hety - d(A%Xi, Xo)? <2"{ Y d (A XN, Xo)P +r7t Y d AZX,N,A?X,-)”} —0.
i€l iel, iel,

as n — 0o, we obtain X € Ny (Ag) . Therefore Ny (Ag) is a complete metric space.
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It can be shown that Ny (AZ) is a complete metric space with the metric

§(X,Y)p = d (X1, Y1)P +d (Xa, Ya)? +suph 1 Zd (A%X;, A%Y;)P, for 0<p< 1.
i€l

Theorem 3.3. If {X;} € S (A%) N Sy (A?), then we have S5 — lim A2X) = S — lim A2X}.

Proof. Suppose that § —lim A2X}, = X and Sp — lim A2X} = X}, and X # X} Then, we
have d (Xo, X() > 0. For (d (Xo, X()) /2 > € > 0, we have
- . (A2 _
hﬁnﬁ I{k <n: d(A Xk,X()) > E}| =1.

Now consider the k,,, —th term of the statistical limit expression 3 1 |{k <n:d (A2Xk, Xo) > e}| :

_|{keu L d (A2, X5) > €| = Z|{ke[ @ (A Xp) 2 e} = s ,,thr

™ pe=l r=1
(1)
where t, = h% |{k €I, : d (22X}, X}) > e}| — 0, since Sp — imA2X; = XJ. Since § is a
lacunary and Z"”_ll_hr Som | het, is a regular weighted mean transform of ¢, it goes to zero as
m — oo. Since (1) is a subsequence of {2 |{k < n:d (A2X}, X}) > e}|};°___1 , we have
~|{b<n:d (A0 Xg) 2 e} » 1
which contradicts to the fact that Xp # X.

Theorem 3.4. Let 0 = {k,} be a lacunary sequence and let X = {X;} a sequence of fuzzy
numbers. Then

i) Np (A2) c Sp(A?),

ii) m (A%) NSy (A%) C Ny (A2),

iii) If X is A?—bounded then Sy (A%) = Ny (A2).
Proof. i) If ¢ > 0 and X € Ny (AZ), we can write

RV d(A%X Xo)P 2 Rt YT d(AMXe, Xo)? 2 A |{k € I : d (A%Xy, Xo) 2 €} €P.
kel, kel
d(A2 X, Xo0)>e

Hence X is A2— statistically convergent.
ii) Now suppose that Sp — limg A%2X}), = X and {Xi} is A2—bounded. Since X € m (A2)
there exists a constant M > 0 such that d (A2Xj, Xo) < M for all k. Let € > 0 be given and

N, such that
hit {keI d (A2Xx, Xo) > (2)1/”} <

- 2Mp




for all » > N, and set L, = {k el :d (A2Xk,X0) > (
Now for all » > N we have

)1/10}'

[S]4

1 > d(A%Xy, Xo)® = -,%- > d(A%Xg, Xo)” + ﬁl— > d(A%Xy, Xo)”
kel, " k€L, " kgL,
1 [/ hee p 1, ¢
S n (2MP) MF+ g g =e

Hence X — X (No (Ag)) .
iil) Follows from (i) and (ii).

Theorem 3.5. |a (A2)| C Ny (Az) if and only if liminf, ¢, > 1.

Proof. (Sufficiency) If liminf, g, > 1, then there exists § > 0 such that 1 + 6 < ¢, for all
r > 1. Then for X = (X) € |a (Az)‘ , we write

k kr—1
1 & 1
Ty = 71: ;d (Ain:XO) - h_'r Zl d (A2Xi’X0)
= (LSt ) - B [ S aatxxg) )
hy \ k, = hr kr—1 i—1

Since h, = k, — ky_1, we have %ﬁ < 42 and 5;;:—1- < 3 . Now %:Zf;ld(Ain,Xo) and
Hl__x Ef;‘l‘ d (A%X;, Xo) converge to 0. Hence X € Np (A?).
(Necessity) Supposekthat liminf, g, = }c Since 6 is a lacunary, we can select a subsequence
C s (i 1 r@)=1 < s
{kn(j)} of 6 satisfying k#,l_Ll <1+ 7 and Eﬁﬁ > j where r; > rj_; + 2. Let A and B denote
two distinct fuzzy numbers. Define X = (X}) such that

AZX, — A, ifie Ly ,forsomej=1,2,...
¢ , otherwise.

Then, for any fuzzy numbers T,

1

— ) d(A?X,,T)=d(AT)
h‘"(j) I, ( ' )

)
and

1
W ;d (A%X;,T) = d(B,T) for r #r;.

It follows that {X;} ¢ Ny (A?). Howewer, X is strongly A?—Cesaro summable, since if ¢ is any
sufficiently large integer we can find the unique j for which with k¢;); < t < kp(j41)-1 and
write

t
LS a(patx) < Botthe (1,12
tia , L) S B



As t — oo, it follows that also j — oo. Hence {X;} € |0 (A2%)].
Theorem 3.6. Ny (Az) C |cr (A2)| if and only if limsup,. ¢» < oo.

Proof. (Sufficiency) If limsup, g, < oo, there exists M > 0 such that ¢, < M for all r > 1.
Let X = (Xj) € Ng (A%) ande > 0. Then we can find R > 0 and K > 0 such that sup;> g 7; < €
and 7; < K for all i € N. Suppose that > R and that t is any integer with kr_; < t < k.
Then we can write

i
%Zd(Ain,Xo) < 7 24 (%K Xo)
i=1 T =1

o

h I I.

k ko — k kr — kp- k -k kr — kp_
_ 1 T+ 2 1T2+...+ R R 1TR+ R+1 RTR+1+...+ r T 17'7‘
kr_1 kr_1 kr_1 kr—1 kr_1

k. —k
<supn)k—R+ supT; | — LD ¢ kr +eM.
i>1 kr—1 i>R kr—1 kr-1
Since k,_; — 00 as t — oo, it follows that 1 3°!_, d (A2X;, Xo) — 0. That is, X = (Xx) €
o (4%)].
(Necessity) Suppose that limsup, g¢- = co. In order to prove the result we need to find a
sequence X = (X) of fuzzy numbers such that X € m (AZ) XeNg (Az) and X ¢ |a (A2)|

Now 6 is lacunary, we could construct a subsequence {kr(])} of 0 satisfying g,(;) > j. Let A and
B be distinct fuzzy numbers. Define X = (X}) such that

= = (Zd (%X, Xo) + > _d(A%Xi, Xo) +...+ > d A2X,,Xo))

IA

AZX, — A, if ko1 <@ < 2k ;) for some j =1,2,...
’ B, otherwise .
Then

1
To() = T

fr(i) Ings)

and 7 = 0 if r # r;. Hence lim, -hlj Y1 d(A%Xg, B) = 0. That is {Xi} € Np (A2).
On the other hand, for the sequence {X%} above and for a fuzzy number 7T,

1 k() 2kr(j)-1 2k (4) :
> d (%X, T) > Y dAT)+ D) d(BT)

"(J) i=1 7‘(.7) 1-—’%(]) 1 i= 2k1‘(]) 1

Ky 1
d(A2X,, B) = d(A,B L €)
(4°%5, B) = d(4, )kr(j)—kr(j)—l j-1

2k, (5y_
d(A T) "'(.7) 1+d(B T) 7'(.7) r(j)—1

>
ke () L)
> d(A,T) -t ”(’) =L +d(B,T) (1-3> —d(B,T)
ke() J
and
2kr(j)-1
1 kr(j)-1 d(B,T)
d(A%X;,T) > —2—d(B,T :
2kr(j) Z )2 Tngyrt T T



Consequently, for any fuzzy number T, we have

2kr(5)-1
Yy d(a%X,,T).

1:_

kr(j)
1 d(B,T) _
lim d(A%X;, T) =d(A,T 2 = lim

Hence {X;} ¢ |0 (A%)].
The following result is a consequence of Theorem 3.5 and 3.6.

Theorem 3.7. Np (A%) = |0 (A?)] if and only if 1 < liminf, ¢, < limsup, ¢, < co.
Theorem 3.8. If X = (X}) € Ny (A2) N |a (A2)| then Ny — lim A2 Xy, = |o| — lim A2X.

Proof. Let |o| —lim A2X}, = Xo and Ny — lim A%2X} = X} and suppose that X # X5 We
write

T+ 7. = Zd (A%X;, Xo) + Zd (A%X;, Xp) > ——Zd (Xo, Xg) = d (Xo, X0)

Since X € Np (A?) we have 7, — 0. Thus, for sufficiently large r, we have &, > %d (Xo, X3) -
Observe that

Zd (A%X;, Xo) — Zd (A%X;, Xo) = b ko1,

k
T =1 T kel T

1 1 1
1—-— )8 >=(1—-—)d (X X}
( q,») 2( ‘IT> ( ‘ 0)

for sufficiently large r. Since X = (X;) € |0 (A?)], the left hand side converges to 0. So, we
must have q,. — 1. That is, lim sup, ¢, < 0co. Thus, by Theorem 3.6, Ny (Az) C |a (A2)| . Since
Ny — limg A?Xy = X}, it follows that |o| — lim A2Xk = Xj§. Therefore,

v

1 i
?Zl (AX;, X4) —

But

t t
% > d(A%Xq, Xp) + -1— > d(A%X;, Xo) > d (Xo, Xp) >0
i=1 i=1

which ylelds a contradiction, since both terms on the left converge to 0.

Theorem 3.9. Let p = (pg) and t = (tx) be any two sequences of positive real numbers.
Let 0 < pg < tg for each k and (-‘t) be bounded. Then Ny (A ) C Ny (AP) ,where

Ny (A}) = {X = (Xx) : lim _}21_ [d (%X, Xo)]™* = 0}.



Proof. Let X € Ny (A%) . Write wy, = [d (Asz,Xo)]t'c and ju, = 8%, 50 that 0 < po <y <
1 for each k.

We define the sequences (ux) and (vi) as follows:

Let ux = wi and vy = 0 if wg > 1, and let ux = 0 and vg = wy if wy < 1. Then it is clear
that for all k € N, we have wy = ug + v, wf:"" = u’,:" + vf:’“. Now it follows that u’,:’“ < up < wg
and vi* < vf. Therefore

1 1
=yt = ) (W)

T kel, T kel,
1 1
< - wg + — E v
= h,z T b k
kel, kel

Since p < 1 so that % > 1, for each r

Y = Y B ()

kel, kel,
. B . 1-p
< Z [(hr—lvk)#]; Z [(hr_l)l—-u] =
kel, kel,
m
= h;l Z Vg
kel
by Holder’s inequality, and thus
u

h;lzw;:" Sh,TlZwk+ hr_lzvk

kelr kel kel

Hence X € Ny (A%) .
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