Fuzzy Strong Pre-semicontinuity

Shi-Zhong Bai, Yong-Fu Chen

Department of Mathematics, Wuyi University, Guangdong 529020, China

Abstract: The theory of fuzzy continuity not only is a significantly basic theory of fuzzy topology and fuzzy analysis but also has wide applications in some other aspects. In this paper, a new class of function is introduced, called fuzzy strongly pre-semicontinuous function. Its properties, its relationship with other functions, examples, and applications are studied.

Key words: Fuzzy topology; Pre-semiopen set; Fuzzy strong pre-semicontinuity

1. Preliminaries

In the paper by (X, δ) or simply by X we mean a fuzzy topological space in the Chang's[4] sense, briefly fts. A^o , A, A_o , A. and A' denote the interior, closure, semiinterior, semiclosure and complement of fuzzy set A, respectively. A fuzzy set A in X is called pre-semiopen iff $A \leq (A')_o$, and pre-semiclosed iff $A \geq (A^o)$.[1]. PSO(X) and PSC(X) denote the family of pre-semiopen sets and family of pre-semiclosed sets of an fts X, respectively. The $A_{\triangle} = \bigcup \{B: B \in PSO(X), B \leq A\}$ and $A_{\sim} = \bigcap \{B: B \in PSC(X), A \leq B\}$ are called the pre-semiinterior and pre-semiclosure of fuzzy set A[1], respectively. Since the union (intersection) of any two fuzzy pre-semiclosed (pre-semiopen) sets need not be a pre-semiclosed (pre-semiopen) set [1], $A \in PSC(X)$ and $B \in PSC(X)$ do not necessarily lead to $A \cup B \in PSC(X)$. Let

 $UPSC(X) = \{A \in PSC(X): \text{ for each } B \in PSC(X), A \cup B \in PSC(X)\}, \\ IPSO(X) = \{A \in PSO(X): \text{ for each } B \in PSO(X), A \cap B \in PSO(X)\}. \\ Clearly, \delta \subset IPSO(X) \subset PSO(X).$

^{*}The work is supported by the NNSF of China and NSF of Guangdong Province (No. 10271069, 021358).

2. Fuzzy Strongly Pre-semicontinuous Functions

Definition 2.1. A function $f:(X, \delta) \rightarrow (Y, \tau)$ is said to be fuzzy strongly presemicontinuous if $f^{-1}(B) \in IPSO(X)$ for each $B \in \tau$.

Corollary 2.2. A function $f:(X, \delta) \to (Y, \tau)$ is fuzzy strongly pre-semicontinuous iff $f^{-1}(B) \in UPSC(X)$ for each $B' \in \tau$.

Theorem 2.3. Let $f:(X, \delta) \rightarrow (Y, \tau)$ be a fuzzy strongly pre-semicontinuous function. Then:

- (1) $f(A_{\sim}) \leq (f(A))^{-1}$ for each fuzzy set A in X.
- $(2) (f^{I}(B)) \sim \leq f^{I}(B^{-})$ for each fuzzy set B in Y.
- $(3) f^{I}(B^{0}) \leq (f^{I}(B))_{\triangle}$ for each fuzzy set B in Y.
- (4) There is a base β for τ such that $f^{-1}(B) \in IPSO(X)$ for each $B \in \beta$.
- (5) For each fuzzy point x_{σ} in X and each $B \in \tau$ with $f(x_{\sigma}) \in B$, there exists an $A \in IPSO(X)$ such that $x_{\sigma} \in A$ and $f(A) \leq B$.
- **Proof.** (1): Let A be a fuzzy set in X. Then $(f(A))^-$ is a fuzzy closed set in Y. Since f is fuzzy strongly pre-semicontinuous, $f^-(f(A))^- \in UPSC(X)$, and $A_- \leq (f^{-1}f(A))_- \leq (f^{-1}((f(A))^-))_- = f^{-1}((f(A))^-)$. Thus, $f(A_-) \leq ff^{-1}((f(A))^-) \leq (f(A))^-$.
- (2): Let B be a fuzzy set in Y. By (1), $f((f^{-1}(B))_{\sim}) \leq (ff^{-1}(B))^{-} \leq B^{-}$. Thus, $(f^{-1}(B))_{\sim} \leq f^{-1}f((f^{-1}(B))_{\sim}) \leq f^{-1}(B^{-})$.
- (3): Let B be a fuzzy set in Y. By (2), $f^{-1}(B') \ge (f^{-1}(B'))_{\sim} = ((f^{-1}(B))')_{\sim}$. Thus, $f^{-1}(B^0) = f^1(B^{r'}) = (f^{-1}(B^r))' \le (((f^{-1}(B))')_{\sim})' = (f^{-1}(B))_{\triangle}$.
 - (4): Obvious.
- (5): Let f be fuzzy strongly pre-semicontinuous, x_a be a fuzzy point in X and $B \in \tau$ such that $f(x_a) \in B$. Then $x_a \in f^{-1}(B)$. Let $A = f^{-1}(B)$, then $A \in IPSO(X)$. We have $f(A) = ff^{-1}(B) \leq B$.

Theorem 2.4. Let $f:(X, \delta) \to (Y, \tau)$ be a fuzzy strongly pre-semicontinuous function, and one-to-one and onto. Then $(f(A))^o \leq f(A_\Delta)$ for each fuzzy set A in X.

Proof. Let f be fuzzy strongly pre-semicontinuous and A be any fuzzy set in X. Then $f^{-1}((f(A))^o) \in UPSO(X)$. By Theorem 2.3 and the fact that f is one-to-one, we have $f^{-1}((f(A))^o) \leq (f^{-1}f(A))_{\triangle} = A_{\triangle}$. Again, since f is onto, we have $(f(A))^o = ff^{-1}((f(A))^o) \leq f(A_{\triangle})$.

Proposition 2.5. If $f: X \rightarrow Y$ is a fuzzy strongly pre-semicontinuous function and $g: Y \rightarrow Z$ is a fuzzy continuous function, then gf is fuzzy strongly pre-semicontinuous.

Theorem 2.6. Let $f: X_1 \to X_2$ and $g: X_3 \to X_4$ be fuzzy strongly presemicontinuous. Then the product $f \times g: X_1 \times X_3 \to X_2 \times X_4$ is fuzzy presemicontinuous.

Proof. Let $B = U(A_i \times B_j)$, where the A_i 's and B_j 's are open sets of X_2 and X_4 , respectively. B is a open set of $X_2 \times X_4$. Then

$$(f \times g)^{-1}(B) = (f \times g)^{-1}(\bigcup (A_i \times B_j))$$

$$= \bigcup (f \times g)^{-1}(A_i \times B_j)$$

$$= \bigcup (f^{-1}(A_i) \times g^{-1}(B_i)).$$

That $(f \times g)^{-1}(B)$ is a pre-semiopen set follows from Theorem 1.7 and 1.6 in [1]. Thus, $f \times g$ is fuzzy pre-semicontinuous.

Theorem 2.7. Let $p_i: X_1 \times X_2 \to X_i$ (i=1,2) be the projection of $X_1 \times X_2$ on X_i . If $f: X \to X_1 \times X_2$ is fuzzy strongly pre-semicontinuous, then $p_i f$ is also fuzzy strongly pre-semicontinuous.

Proof. This follows directly from Proposition 2.5.

Theorem 2.8. Let $f: X_1 \to X_2$ be a function. If the graph $g: X_1 \to X_1 \times X_2$ of f is fuzzy strongly pre-semicontinuous, then f is also fuzzy strongly pre-semicontinuous.

Proof. This follows directly from Theorem 2.7.

3. Examples

Definition 3.1[1]. A function $f: (X, \delta) \to (Y, \tau)$ is said to be fuzzy presemicontinuous if $f^{-1}(B) \in PSO(X)$ for each $B \in \tau$.

Clearly, the following statements are valid:

fuzzy continuity ⇒ strong pre-semicontinuity ⇒ pre-semicontinuity

None of the converses need to be true. We give the following examples.

Example 3.2. Let X = [0, 1] and A, B, C be fuzzy sets in X defined as follows:

 $A(x)=0.1, x \in [0,1];$ $B(x)=0.5, x \in [0,1];$ $C(x)=0.4, x \in [0,1].$

Then $\delta = \{0, A, B, l\}$ and $\tau = \{0, C, l\}$ are fuzzy topologies on X. Let $f:(X, \delta) \to (X, \tau)$ be an identity mapping. Clearly, f is not fuzzy continuous; and f is fuzzy strongly pre-semicontinuous.

Example 3.3. Let $X = \{x, y, z\}$ and A, B, C be fuzzy sets in X defined as follows:

A(x)=0.2, A(y)=0.4, A(z)=0.5;

B(x)=0.8, B(y)=0.8, B(z)=0.6;

C(x)=0.3, C(y)=0.2, C(z)=0.4.

Then $\delta = \{0, A, B, 1\}$ and $\tau = \{0, C, 1\}$ are fuzzy topologies on X. Let $f: (X, \delta) \rightarrow (X, \tau)$ be an identity mapping. In (X, δ) , by easy computations it follows that $C \leq (C)_o = (A')_o = A'$, i.e. $f^{-1}(C) = C$ is a pre-semiopen set. Hence, f is fuzzy pre-semicontinuity. Because $A \cap C = B'$ and $B' \leq (B')_o = (B')_o = 0$, $A \cap C$ is not a pre-semiopen set in (X, δ) , i.e. $f^{-1}(C) = C \not\in IPSO(X, \delta)$. Thus, f is not fuzzy strongly pre-semicontinuous.

4. Applications

Definition 4.1[2]. A fuzzy set A is called a PS-connected set if A cannot be represented as a union of two PS-separated non-null sets.

Theorem 4.2. Every fuzzy strongly pre-semicontinuous image of a fuzzy PS-connected set is fuzzy connected.

Proof. Let $f: X \to Y$ be a fuzzy strongly pre-semicontinuous function and A be a fuzzy PS-connected set in X. If possible, let f(A) be not fuzzy connected in Y. Then there exist two separated non-null sets B and C in Y such that $f(A)=B \cup C$. Put $E=A \cap f^{-1}(B)$ and $F=A \cap f^{-1}(C)$. Then

$$E \cup F = A \cap (f^{-1}(B) \cup f^{-1}(C)) = A \cap (f^{-1}f(A)) = A,$$

and

$$E_{\sim} \cap F = (A \cap f^{-1}(B))_{\sim} \cap (A \cap f^{-1}(C)) \leq A_{\sim} \cap (f^{-1}(B))_{\sim} \cap A \cap f^{-1}(C)$$
$$\leq A \cap f^{-1}(B) \cap f^{-1}(C) = A \cap f^{-1}(B \cap C) = A \cap f^{-1}(O_Y) = O_X.$$

Analogously, $E \cap F_{\sim} = 0_X$. Again $E \neq 0_X$, in fact, if $E = 0_X$, then $A = F = A \cap f^{-1} \} (C)$. And so $A \leq f^{-1}(C)$, and $f(A) \leq F$. Hence, $B \leq C$, This is a contradiction. Analogously, $F \neq 0_X$. Thus, A is not fuzzy PS-connected in X.

Definition 4.3. A fuzzy topological space (X, δ) is called fuzzy IPSO-compact (countably IPSO-compact) if for every cover (countable cover) $\{V_{\sigma}: V_{\sigma} \in IPSO(X)\}$ of X, there exists a finite subcover of X.

Theorem 4.4. Every surjection fuzzy strongly pre-semicontinuous image of a fuzzy IPSO-compact space is fuzzy compact.

Proof. Let $f: X \to Y$ be a surjection fuzzy strongly pre-semicontinuous function of a fuzzy IPSO-compact space X to a fuzzy topological space Y. Let $\{V_a: a \in J\}$ be a fuzzy open cover of Y. Then $f^{-1}(V_a) \in IPSO(X)$ for each $a \in J$, and $\varphi = \{f^{-1}(V_a): a \in J\}$ is a cover of X. Since X is fuzzy IPSO-compact, there exists a finite subset J_Q of J such that $\bigcup \{f^{-1}(V_a): a \in J_Q\} = I_X$. Now

$$I_Y = f(I_X) = f(\bigcup \{ f^{-1}(V_a) : a \in J_o \}) = \bigcup \{ ff^{-1}(V_a) : a \in J_o \}$$

 $\leq \bigcup \{ V_a : a \in J_o \}.$

Therefore, Y is fuzzy compact.

Corollary 4.5. Every surjection fuzzy strongly pre-semicontinuous image of a countably IPSO-compact space is countably compact.

References

- [1]. S.Z.Bai, Fuzzy pre-semiopen sets and fuzzy pre-semicontinuity, Proc.ICIS'92 (1992)918-920.
- [2]. S.Z.Bai, PS-connectedness of L-fuzzy sets, in press.
- [3]. S.Z.Bai, L-fuzzy PS-compactness, IJUFKS, 10(2002)201-209.
- [4]. C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl.24(1968) 182-190.
- [5]. Y.M.Liu, M.K.Luo, Fuzzy Topology, World Sci. Publishing, Singapore, 1988.
- [6]. G.J.Wang, Theory of L-fuzzy Topological Spaces, Press of Shaanxi Normal University, Xian, 1988.