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Abstract-In this paper, we first develop a new method to design symmetric wavelets, and then
introduce the idea of Neyman and Pearson to give a wavelet denoising method. The simulation results
show the good performance of our proposed method.
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1. INTRODUCTION
Wavelet thresholding technique[9] for denoising is viewed as one of the breakthroughs in
wavelet theory and its applications. In this paper, we try a novel denoising method based on
symmetric wavelets and the idea of Neyman and Pearson. Our method consists of two steps.
Firstly, we introduce the theory of wavelets with convolution-type orthogonality conditions[8],
which uses free parameters to develop a new way to construct biorthogonal wavelets. Based on
this theory, we find an easier and more efficient method to construct symmetric wavelets. Such
wavelets contain the symmetric wavelets obtained in [8]. And then we apply a novel wavelet
shrinkage/thresholding technique based on the idea of Neyman and Pearson[10] to give a wavelet
denoising method. We do experiments using this method and new constructed wavelets. The
improving mean square error of signal denoising makes it possible for this method for further use.
II. SYMMETRIC WAVELETS
Multiresolution analysis[4] is a very important concept to construct wavelet functions. Let

@(x) be ascaling functionin L*(R) satisfying a two-scale relation

#(x)=Y a,V2¢(2x—n). (1)

neZ
Where Z denotes the set of integers, and ¢, is real parameter. Define spaces

V, = {Zco.kqﬁ(-——k),co‘k :real,Zc(ik < +00} .
V, = {Zél_k ‘/5¢(2"k),cl,k :real,chl%k < +o0} )
Obviously, V, is a subspkace of ¥, and has an orthoéonal complement W, in V,. The
orthonormal basis of W, inthe formof {y(-—k),k € Z} is called a wavelet function. In order
to construct wavelet functions with linear phases, [8] introduced a function $,(x) in L*(R)

and let it satisfy a two-scale relation

$,(x)=3(p*a ),V2¢,(2x—n). (3
Here, P=(p,,)p-_ss...s arereal p"arameters the symbol * denotes the convolution
(p*a), = z PnaQ; - (4)
in-lisM

It has been proved that under some condmons of parameters (p, ), the orthonormality



conditions imposing on the scaling and wavelet functions become
M

z( meal+2k—m )al = 5k‘0 ) keZ (5)
@), = ¢, - by =0. 6)
And let a(g) = Z p,e’™ and y(x)= z B, V2 2¢(2x —n), the wavelet coefficient J,

m=-M
can be given as

B, = Z( it & jmcos(n+l+l)gdg (7)
At present, (5) has not been solved analytlcally in the general case. Here we try to use (5) to
obtain symmetric wavelets in the general case.
First we add some limiting conditions to the scaling coefficients, that is
a,=a,, @=-=N,,N) 8
An additional requirement for «, is
Ya, =2 (9)
This is derived by integrating both sides o?' the two-scale relation (1). From the condition of
wavelet Iw(x)dx =0, it follows that

> (-D"a, =0. (10)
The conditions that parameters ( p,, ) have to satisfy have been discussed in [8], and here we
consider it true that p, = p_ (m=0,---,M).

Now, from these regularity conditions and equation (5) we can construct symmetric scaling
coefficients for different N and M. Then from equation (7) the wavelet coefficients can be obtained.
Since @, =a_,, we have B, _, = f8_ . It means wavelet function w(x) is symmetric with
respect to x =-1/2. We take example for N=2 and M=3 to see the constructing process.

When N=2 and M=3, (5) can be written as

2 3
z(zpm%n w)e = (11

__2 m=-
Equations (11) for £ = 1, 2 coincide with those fork=-1, -2, respectlvely So it suffices to consider

(11) for k=-2, -1, 0, that is
2p.(a,a, +a,a,)+ p,(2a,a, +a)+2pa,a, + pyal =0 (12)
2py(a,a, +a,a,)+ p,(a, +2a +3al)+ p, (2aya, +4a,a,) + p,(a} +2a,a,) =0 (13)

4p,a,a, + p,(4a,a, +2a;) +4p (a,a, +a,a,) + p,(al +2a? +2a) =1 (14
Additional requirements for «, are

a0+2a,+2a2=x/5 (15)

a, —2a,+2a,=0 (16>

We assume another condition for p, like [8]
po+2p1+2p7+2p3"1 an
Let 7., = f,/a(g +r)l a(g)cos(n+1+1)gds then S, can be computed as



follow ,
B, = Z("I)H Qo == (F + ) oy (r, +7,,) —ar,, (18)

TABLE I s'?ifmc GROUPS OF SCALING AND WAVELET COEFFICIENTS

i:N=4,M=1, p,=2, p,=p_=0.5

Q, : -0.04419417382416, -0.08838834764832. 0.35355339059327, 0.44194173824159, 0.08838834764832, 0.44194173824159,

0.35355339059327, -0.08838834764832, -0.04419417382416

ﬂ" : 0.00001746714644, 0.00005485676480, -0.00002778010695, -0.00000316953318, 0.00045291636238. 0.00616971919851,
0.01390427372616. -0.16407233201906, -0.27926340158108, 0.36190206932572, 0.12176748836674, 0.36190206932572.
-0.27926340158108, -0.16407233201906, 0.01390427372616, 0.00616971919851, 0.00045291636238, -0.00000316953318,

-0.00002778010695, 0.00005485676480, 0.00001746714644

ii: N=5, M=1, p,=1.16592899658748, p, = p_,=-0.08296449829374

&, : 0.00005406483306, 0.00037989596670, -0.01040729656104, -0.05475153755612, 0.36390662232125, 0.81585006436538,

n

0.36390062232125, -0.05475153755612, -0.01040729656104, 0.00037989596670, 0.00005406483306

ﬂ" : 0.00000793387534. 0.00001898330148. -0.00006925289659. 0.00004408223181. 0.00000234673982, 0.00000790782076,
-0.00092814269799. -0.00577406870711, 0.07834448658488, 0.31214310351279, -0.76759707408512, 0.31214310351279,
0.07834448658488. -0.00577406870711, -0.00092814269799, 0.00000790782076. 0.00000234673982, 0.00004408223181,

-0.00006925289586. 0.00001898330148, 0.00000793387534

iii: N=2, M=3, p,=13, p,=p_, =8.1875, p,=p_, =25, p,=p_,=-0.31250

a,  0.08838834764832, 0.35355339059327, 0.53033008588991, 0.35355339059327, 0.08838834764832

ﬂ" : -0.00028435018481. -0.00135720785571, -0.00440912154448, <0.00970692956834, 0.00297164939604, 0.05977127583183,

0.06156259401475. -0.21709369497684, 0.06156259401475. 0.05977127583183. 0.00297164939604, -0.00970692956834,

-0.00440912154448, -0.00135720785571. -0.00028435018481

Note: Let @, and ﬂ” be zero-padded to equal length, and {a,,} is the reconstruction low-pass filter,
{(-1)"a,} is the decomposing high-pass filter. Regulate the sum of the vector {ﬂ;} = {(-n" B}t
\/5 . then { ,B,i} is used as the decomposing low-pass filter and {(-1)"+l ,3,:} is the reconstruction
high-pass filter.
II1. WAVELET DENOISING
Suppose the signal X =[x, x,,X,,---,x,_,] has been corrupted by white noise, that is
X, =5, +n, i=0,1,2,, N-1.

§; 1s the true value of the signal and n, is the noise value at the moment i. Let S is the estimate

of the signal. The mean square error is computed as follow

£S5 =55 = %Z(s -5’ (19)
i=0




Donoho and Johnstone[9] have demonstrated that wavelet denoising is a powerful tool for
removing the noisy component of a corrupted data sequence. If the source signal is smooth enough,
this thresholding technique will perform well since the source signal will only contribute to a few
wavelet coefficients. However, for source signals that are not smooth at some spatial points, such
as radar and ultrasound signals, special attention is still required for those wavelet coefficients
associated with singularity points because they carry important information about the transmitted
signal. In our study, we introduce the thresholding technique based on the idea of Neyman and
Pearson[10] to resolve the problem. First, the following binary test is applied

H,:cdy ~N(0,0) versus H,:cd ~N(cd},,0)  j=12,~,J.
If Plced , IHl }/ Plcd , lHO} > P{H,}/P{H } ,H, is assured; otherwise, H, is taken.
The confidence interval is chosen as [ — 4, A ] with the confidence level o = P('cd /"l <A).ltis
known that for any given a € (0,1) the corresponding is optimized in the Neyman and Pearson
sense. Let @€ (0,]) and A= \/Eoerﬁnv(a) [where erfinv(*) is the inverse function of

erf(y)=2 I(N7) J: exp(~t*)dt ), and define threshold/shrinkage as follow

Threshold:
~ ed,,ifled |2 2
Cd/-k ={ J ‘ J ‘

0,otherwise.

This threshold has a priori information of noise distribution that is used to define the
shrinkage instead of choosing a constant threshold o+/2logn . The wavelet denoising method
based on the idea of Neyman and Pearson can be summarized as follows
(a) Wavelet transform of the source signal and index the wavelet coefficients cd & =1, 2,

J), J means the level of decomposing and the scaling coefficients remain still.

(b)  Apply the novel threshold to test each wavelet coefficient and obtain the noise free wavelet

coefficients CJ_ P
(c) Inverse wavelet transform to recover source signal.

IV. SIMULATION RESULTS

We did experiments on the four typical signals, Blocks, Bumps, Heavy Sine and Doppler in
MATLAB. The length of the signal sequences was 2048, signal-to-noise ratio was 7, initial
number was 2055615866, the level of wavelet decomposing was 5 with global shrinkage, and the
standard deviation of signal ¢ was chosen as 1. Comparisons were made with the denoising
method of applying the threshold based on the idea of Neyman and Pearson with the confidence
level a=0.9995 and the second group of wavelet in TABLE I[denoted by New], and of Donoho’s
hard thresholding technique with wavelets ‘bior3.9’ and ‘db10’[denoted by bior3.9 and db10]. The

mean square errors were given respectively in TABLE II, which showed the good performance of



our proposed method.

TABLE I1 MSE of Signal Denoising

MSE Blocks Bumps HesviSine | Dopple

Original signal 1.0418 1.0418 1.0418 1.0418

bior3.9 0.2660 0.2004 0.1571 0.2024

dbi0 0.2814 0.1302 0.0332 0.1011

New 0.1410 0.1243 0.0343 0.1167
V.CONCLUTIONS

This paper considers the wavelet-denoising problem, and a signal denoising method based on

the idea of Neyman and Pearson and new symmetric wavelets is proposed. Simulation results

show its good performance. The proposed method improves the mean square error of signal

denoising. However, further research need to be done on the influence of the parameters on the

quality of the wavelets.
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