On a-order-convexity of fuzzy syntopogenous spaces Wang Hong

College of Science, Southwest University of Science and Technology Mianyang 621000, Sichuan, P.R.China

Abstract:

In this paper, we combine L-fuzzy syntopogenous structure on X with algebraic structure on X. First, the *-increasing and *-decreasing spaces have been studied. Second, we define a-order-convexity on syntopogenous structures (X,S,\leq) . Third, the equivalent description of a-order-convexity have been given. Finally, some important properties of a-order-convexity have been obtained.

Keywords:

Fuzzy topology, Order, Algebra; convexity.

1 Preliminaries

In this paper, $L=<L, \land, \lor$, \gt always denotes a completely distributive lattice with order-reversing involution"." Let 0 be the least element and 1 be the greatest one in L. Suppose X is a nonempty (usual) set, an L-fuzzy set in X is a mapping A: $X \rightarrow L$, and L^x will denote the family of all L-fuzzy sets in X. It is clear that $L^x = <L^x, \le, \land, \lor, \gt$ is a fuzzy lattice, which has the least element 0 and the greatest one 1, where $0 \in 1$, $1 \in 1$, for any $1 \in 1$.

Definition 1.1. A binary relation $\mbox{\ensuremath{\mbox{$\langle$}}}$ on $\mbox{\ensuremath{\mbox{$L^*$}}}$ is called an L-fuzzy semi-topogenous order if it satisfies the following axiom: (1) $\mbox{\ensuremath{\mbox{$\langle$}}}$ 0 and $\mbox{\ensuremath{\mbox{$\langle$}}}$ (2) A $\mbox{\ensuremath{\mbox{$\langle$}}}$ B implies $\mbox{\ensuremath{\mbox{$\langle$}}}$ B implies $\mbox{\ensuremath{\mbox{$\langle$}}}$ B implies $\mbox{\ensuremath{\mbox{$\langle$}}}$ B implies $\mbox{\ensuremath{\mbox{$\langle$}}}$ B iff $\mbox{\ensuremath{\mbox{$\langle$}}}$ A'. An L-fuzzy semi-topogenous order $\mbox{\ensuremath{\mbox{$\langle$}}}$ is called: (I) symmetrical if $\mbox{\ensuremath{\mbox{$\langle$}}}$ defined by $\mbox{\ensuremath{\mbox{$\langle$}}}$ B iff $\mbox{\ensuremath{\mbox{$\langle$}}}$ A'. An L-fuzzy semi-topogenous order $\mbox{\ensuremath{\mbox{$\langle$}}}$ is called: (I) symmetrical if $\mbox{\ensuremath{\mbox{$\langle$}}}$ = $\mbox{\ensuremath{\mbox{$\langle$}}}$ C II) topogenous if $\mbox{\ensuremath{\mbox{$\langle$}}}$ and $\mbox{\ensuremath{\mbox{$\langle$}}}$ B1 and $\mbox{\ensuremath{\mbox{$\langle$}}}$ implies $\mbox{\ensuremath{\mbox{$\langle$}}}$ B2 implies $\mbox{\ensuremath{\mbox{$\langle$}}}$ B1 $\mbox{\ensuremath{\mbox{$\langle$}}}$ B1 $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B2 implies $\mbox{\ensuremath{\mbox{$\langle$}}}$ C B1 $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B2 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ Algorithm in $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B2 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B3 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B1 $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B2 implies $\mbox{\ensuremath{\mbox{$\rangle$}}$ B3 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B3 implies $\mbox{\ensuremath{\mbox{$\rangle$}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$ B4 implies $\mbox{\ensuremath{\mbox{$\rangle$}}}$

Suppose that $\mathsize{0.95}{\mathsize{0.95}$

Definition1.2. An L-fuzzy syntopogenous structure on X is a nonempty family S of L-fuzzy semi-topogenous order on X having the following two properties:(LFS1) S is directed in the sense that given any two members of S there exist a member of S finer than both;(LFS2) For each $\langle \langle \rangle$ in S there exist $\langle \langle \rangle$ 1 in S such that A $\langle \langle \rangle$ B implies the existence of an L-fuzzy set C with A $\langle \langle \rangle$ 1B.

If S is an L-fuzzy syntopogenous structure on X, then the pair (X,S) is called an L-fuzzy syntopogenous space. An L-fuzzy syntopogenous structure S consisting of a single semi-topogenous order is called a topogenous structure and the pair (X,S) is called an L-fuzzy topogenous space. S is

called perfect (resp. biperfect) if each member of S is perfect (resp. biperfect). An L-fuzzy syntopogenous structure S_1 is called finer than another one S_2 , if for each % in S_2 there exist a member of S_1 finer than %. In this case we also say that S_2 is coarser than S_1 , denoted by $S_2 \leqslant S_1$. If S_1 is finer than S_2 and S_2 is finer than S_1 , then S_1 , S_2 are called equivalent, denoted by $S_1 \sim S_2$. To every L-fuzzy syntopogenous structure corresponds an L-fuzzy topology τ (S) given by the interior operator $\mu^0 = \sup\{\rho:\rho\ \%\ \mu$ for some $\%\in S_1$. If $\{\%_\alpha:\alpha\in \wedge\}$ is a family of L-fuzzy semi-topogenous order on X then $\%=\bigvee_{\alpha\in \wedge} \%_\alpha$ is the L-fuzzy semi-topogenous order defined by μ % ρ iff μ % ρ for some $\alpha\in \wedge$. If S is a L-fuzzy syntopogenous structure, then it is easy to see that % ρ iff ρ is an L-fuzzy topogenous order and ρ is an L-fuzzy topogenous structure. Moreover, ρ if ρ iff ρ iff there exists ρ if ρ with ρ iff there exists ρ if ρ iff there exists ρ if ρ iff there exists ρ if ρ iff there exists ρ iff ρ iff there exists ρ iff ρ iff there exists ρ iff ρ iff ρ iff ρ iff there exists ρ iff there exists ρ iff ρ iff

2. *-increasing and *-decreasing spaces

A preorder on X is a binary relation" \leq "on X which is reflexive and transitive, preorder on X which is also anti-symmetric is called a partial order or simply an order. By a preordered (resp. an ordered) set we mean a set with a preorder (resp. a partial order) on it

Definition2.1. (Katsaras [4]) Let (X, \le) be a preorder set, $A \in L^x$ is called: (i) * -increasing if $x \le y$ implies $A(x) \le A(y)$; (ii) *-decreasing, if $x \le y$ implies $A(y) \le A(x)$; (iii) order-convex, if $y \le x \le z$ implies $A(y) \land A(z) \le A(x)$.

Definition2.2. Let (X, \le) be a preorder set, define mappings p,a,c: $L^x \to L^x$ as follows: for any $A \in L^x$, $x \in X$, $p(A)(x) = \bigvee \{A(y): y \le x, a(A)(x) = \bigwedge \{A(y): x \le y, c(A) = p(A) \land a(A).$

Theorem2.1. Let (X,S) be an L-fuzzy syntopogenous space, define a binary relation \leq_s on X as follows: for any $x, y \in X$, $x \leq_s y$ iff for $A \in L^x$, $(X \in S, \lambda \in L, \lambda \neq 0 \text{ and } x_\lambda)$ A implies $y_\lambda \leq A$, then " $\leq s$ " is a preorder on X, it is called the preorder generated by S on X.

proof.(1) (Reflexivity) We can get immediately from x_{λ} $\langle \langle A \rangle$ implies $x_{\lambda} \leq A$.

(2) (Transitivity) Suppose $x \le_s y$, $y \le_s z$ and for $A \in L^x$, $(\le S, \lambda \in L, \lambda \ne 0, x_\lambda (A \cdot By (LFS_2))$ there exist $(\le S, B \in L^x)$, such that $x_\lambda (\le B \land A \cdot B)$ Also because $y \le_s z$, hence $z_\lambda \le A$, i.e. $x \le_s z$.

Definition 2.3. Let (X, \leq) be a preorder set, S be an L-fuzzy syntopogenous structure on X, then (X,S, \leq) is called *-increasing (*-decreasing) if for $x,y \in X$, $x \leq y$ implies $x \leq y$ ($y \leq x$).

Proposition2.2. (1) Let S_1 , $S_2 \in S(X)$ and if $S_2 \leq S_1$, then for x, $y \in X$, $x \leq_{S_1} y$ implies $x \leq_{S_2} y$. And if $S_1 \sim S_2$, then $S_1 = S_2 = S_2$

Theorem2.3. If \leq is a preorder on X, $S \in S(X)$, then (1) (X,S,\leq_S) is *-increasing; (2) (X,S_{\leq},\leq) is

*-increasing, (3) (X,S, \leq) is *-increasing iff S \leq S $_{\leq}$.

Proof. (1) Obvious.

(2) If $x \le y$, $S_{\le} = \{ (X) \in A \in L^x, \lambda \in L, \lambda \ne 0 \text{ and } x_\lambda (X) \in A(y), i.e. } y_\lambda \le A \text{. thus } x \le S_{\le} y$, by Definition 2.3 (X, S_{\le}, \le) is *-increasing.

(3)" \Rightarrow "If $S \leq S_{\leq}$, by (2) (X, S_{\leq}, \leq) is *-increasing, from Proposition2.2(2)then (X, S, \leq) is *-increasing.

" \succeq "Suppos (X, S, S) is *-increasing, from Proposition2.2(2)then(X, S, S) is *-increasing.

Suppos (X, S, S) is *-increasing, so (X, S, S) is *-increasi

Corollary2.4. Let (X, \leq) be a preorder set, $H_i = \{E \in L^x : E \text{ is increasing on } (X, \leq)\}$, define binary relation $(X, E) \in A$ as follows: $A \in B$ iff there exists $E \in H_i$ such that $A \leq E \leq B$. Then $S \in S(x)$, (X, S, \leq) is *-increasing iff $S \leq \{(X, H_i)\}$.

proof. Easily by Theorems 3.8[6] and 2.3.

Theorem2.5. The supremum of any mumber of *-increasing (*-decreasing) L-fuzzy syntopogenous structures on X is also *-increasing (*-decreasing)

The proof is omitted.

Corollary2.6. S^u (S^1) is the finest one of all *-increasing (*-decreasing) L-fuzzy syntopogenous structures which is coarser than S on S(X). Where $S^u = \bigvee \{S^i \in S(X): (X, S^i, \leq) *-increasing, S^i \leq S\};$ $S^1 = \bigvee \{S^i \in S(X): (X, S^i, \leq) *-decreasing, S^i \leq S\}.$ And (1) $S_1 \leq S$ implies $S_1^u \leq S^u$, $S_1^1 \leq S^1$; (2) $S_1 \sim S$ implies $S_1^u \sim S^u$, $S_1^1 \sim S^1$.

Proposition 2.7. (1) If $f: (X, \leq) \rightarrow (Y, S, \leq')$ is an increasing mapping, (Y, S, \leq') is *-increasing (*-decreasing), then $(X, f^1(S), \leq)$ is *-increasing (*-decreasing); (2) If f is a decreasing mapping, (Y, S, \leq') is *-increasing (*-decreasing), then $(X, f^1(S), \leq)$ is *-decreasing (*-increasing).

Theorem 2.8. If $\{(X_{\lambda}, S_{\lambda}, \leqslant_{\lambda}): \lambda \in \Lambda\}$ is a family of *-increasing (*-decreasing) L-fuzzy syntopogenous space, then the product $(\Pi_{\lambda \in \Lambda} X_{\lambda}, \Pi_{\lambda \in \Lambda} S_{\lambda}, \leqslant)$ is *-increasing (*-decreasing), where $\{x_{\lambda}\} \leqslant \{y_{\lambda}\}$ iff for any $\lambda \in \Lambda$, $x_{\lambda} \leqslant_{\lambda} y_{\lambda}$.

Proof. By Corollary 2.6 (1) and Def. 7.1 .([4]).

3. a-order-convexity

Definition3.1. Let S be an L-fuzzy syntopogenous structure on (X, \leq) , (X, S, \leq) will be said to be a-order-convex iff $S \sim (S^u \vee S^1)^a$, for $a \in \{i, p, b\}$ where i is identity.

Proposition3.1 If (X,S,\leqslant) is a-order-convex, then $S^{\sim}S^a$. **Proof.** If (X,S,\leqslant) is a-order-convex, then $S^a \sim (S^u \vee S^1)^{aa} = (S^u \vee S^1)^a \sim S$, so $S \sim S^a$.

Theorem3.2. (X,S,\leq) is a-order-convex iff $S\sim(S_1\vee S_2)^a$, where (X,S_1,\leq) $((X,S_2,\leq))$ is *-decreasing (*-increasing).

Proof. The necessity is obvious. Conversely, if $S \sim (S_1 \vee S_2)^a$, then $S_i \leq (S_1 \vee S_2) \leq (S_1 \vee S_2)^a \leq S$, (i=1,2) $S_1 \leq S^u$, $S_2 \leq S^1$, therefore $S \sim (S_1 \vee S_2)^a \leq (S^u \vee S^1)^a \leq S^a$, but $S^a \sim (S_1 \vee S_2)^{aa} = (S_1 \vee S_2)^a \sim S$, so that $(S^u \vee S^1)^a \sim S$.

Proposition3.3. If (X,S,\leq) is a-order-convex, $a' \in \{i,p,b\}$ is an elementary operation such that aa' is also an elementary operation, then (X,S^{a_i},\leq) is aa'-order-convex.

Proof. If $S \sim (S^u \vee S^1)^a$, then $S^{a_i} \sim (S^u \vee S^1)^{aa_i}$. From Theorem 3.2 have (X, S^{a_i}, \leqslant) is an anisotropic order-convex.

Theorem3.4. If (X,S,\leqslant) is a-order-convex, then (X,S^{ta},\leqslant) is also a-order-convex. **Proof.** If (X,S,\leqslant) is a-order-convex, then $S^{ta}\sim(S^u\vee S^1)^{ata}=(S^u\vee S^1)^{ta}\sim(S^u\vee S^1)^a\sim(S^tu\vee S^t)^a$, by Theorem 3.2 (X,S^{ta},\leqslant) is a-order-convex.

Theorem3.5. Let $\{S_i : i \in I \neq \Phi\}$ be a family of a-order-convex L-fuzzy syntopogenous structure on the preorder set (X, \leq) , then $(\bigvee_{i \in I} S_i)^a$ is also a-order-convex on (X, \leq) .

Proof. Put $S = (\bigvee_{i \in I} S_i)^a$, $S_1 = \bigvee_{i \in I} S_i^u$ and $S_2 = \bigvee_{i \in I} S_i^1$, then S_1 is *-increasing, S_2 is *-decreasing on $(X_i \leq)$. As $S_i \sim (S_i^u \vee S_i^1)^a$, then $(\bigvee_{i \in I} S_i)^a \sim (\bigvee_{i \in I} (S_i^u \vee S_i^1)^a)^a \sim ((\bigvee_{i \in I} S_i^u) \vee (\bigvee_{i \in I} S_i^1))^a \sim (S_1 \vee S_2)^a$, by Theorem 3.2 $(\bigvee_{i \in I} S_i)^a$ is also a-order-convex on $(X_i \leq)$.

Theorem3.6. Let (X, \leq) , (X', \leq') be preordered set, f is a preorder preserving mapping from X to X'. If (X', S', \leq') is a-order-convex, then $(X, f^1(S'), \leq)$ is also a-order-convex.

Proof. If (X', S', \leq') is a-order-convex, then $f^1(S') \sim f^1((S'^u \vee S'^1)^a) = f^1(S'^u \vee S'^1)^a = (f^1(S'^u) \vee f^1(S'^1))^a$, by Proposition 2.7, $f^1(S'^u)$ is *-increasing, $f^1(S'^1)$ is *-decreasing on (X, \leq) . Also by Theorem 3.2 then $(X, f^1(S'), \leq)$ is also a-order-convex.

Acknowledgements

This research has been supported by National Science Foundation of China (No:69803007)

References

- [1] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968)182-190.
- [2] A.K.Katsaras, Ordered fuzzy topological space, J. Math. Anal. Appl. 84 (1981)44-58.
- [3] A.K. Katsaras, On fuzzy syntopogenous structures, R.sv. Roumaine Math. PureAppl. 30 (1985)419-431.
- [4] A.K.Katsares, C.G. Petalas, On fuzzy syntopogenous structures, J.Math. Anal. Appl. 99(1984)219-236.
- [5] Mo Zhi Wen ,Su Lan, Syntopogenous structure on completely distributive lattice and its connectedness, Fuzzy Sets and Systems 72 (1995)365-371.
- [6] Mo Zhi Wen ,Su Lan, On fuzzy Syntopogenous structure and preorder(I), Fuzzy Sets and Systems 90 (1997)355-359.
- [7] Pu Baoming, Liu Ying-ming Fuzzy topology (I), J.Math. Anal. Appl. 76(1980)571-599
- [8] Wang Hong, The refinement of syntopogenous structure on completely distributive lattice, BUSEFAL 74(1997)26-30.
- [9] Wang Hong, On fuzzy Syntopogenous structure and algebraic structure, The journal of fuzzy math. 1(2001)245-250.
- [10] L.A. Zadeh, Puzzy Set, Inform. and Control 8 (1965) 338-353.