L-Fuzzy para - metacompact spaces and Perfect maps

Sunil Jacob John
Department of Mathematics
Calicut Regional Engineering College
Calicut- 673 601, Kerala, INDIA
e-mail: sunil@crec.ker.nic.in

Abstract

Some good extensions of both para and metacompact spaces and their behavior under various kinds of maps are discussed in the L-fuzzy setup.

1.Introduction

The concept of paracompactness in fuzzy topology was introduced by Luo [3] in [0,1] set up. Some detailed sketches of different types of paracompactness in the L-fuzzy set up can be seen in [4]. Regarding metacompactness, author has some work in [0,1] case in [8]. Here we try to extent the investigation in to L-Fts using α -Q-covers and quasi coincidence relation. In [7] author has some results regarding the behavior of metacompact spaces under perfect maps in the [0,1] fuzzy context. Some work related to paracompactness and perfect maps can be found in [5]. In this paper, we also try to bring out the behaviour of para-meta type spaces under perfect maps in the L-fts. For defining the perfect maps, we make use of the concept of N- Compactness. Since compactness in fuzzy topology is defined in various forms, we can define different types of perfect maps correspondingly. The reason for choosing N-compactness is that it possesses better properties among all these types and it is defined in terms of α -Q-covers and quasi coincidence relation which are used in defining para-metacompact spaces in L-fts.

The lattice L we are considering is a complete, completely distributive one equipped with an order reversing involution. For basic definitions and notations, we

Keywords: - Fuzzy Topology, Metacompactness, Paracompactness

AMS Subject Classification

54 D 20, 54 A 40

follow Ying-Ming and Mao-Kang [4]. We take q to denote the quasi coincidence relation. Also χ denote the characteristic function and Pt (L^X) is the collection of all L-fuzzy points in the L-fts (L^X , δ). A molecule in a lattice L is a join irreducible element in L and the set of all molecules of L is denoted by M(L).

2. Preliminaries and Basic Definitions

- **2.1 Definition** [4] Let L^X , L^Y be two L-fuzzy spaces, f: $X \rightarrow Y$ be an ordinary mapping. Based on this we define the L-fuzzy mapping $f \rightarrow : L^X \rightarrow L^Y$ and its L-fuzzy reverse mapping $f \leftarrow : L^Y \rightarrow L^X$ by
- $f \stackrel{\rightarrow}{:} L^X \rightarrow L^Y$, $f \stackrel{\rightarrow}{\to} (A)(y) = \vee \{A(x) : x \in X , f(x) = y \} \forall A \in L^X$, $\forall y \in Y$. $f \stackrel{\leftarrow}{:} L^Y \rightarrow L^X$, $f \stackrel{\leftarrow}{\to} (B)(x) = B(f(x))$, $\forall B \in L^Y$, $\forall x \in X$.
- **2.2 Definition** [4] Let (L^X, δ) , (L^Y, μ) be L-fts's, $f \to L^X \to L^Y$ an L-fuzzy mapping. We say $f \to L^Y$ is an L-fuzzy continuous mapping from (L^X, δ) to (L^Y, μ) if its L-fuzzy reverse mapping $f \to L^Y \to L^X$ maps every open subset in (L^Y, μ) as an open one in (L^X, δ) . ie, $\forall V \in \mu$, $f \to L^X$
- **2.3 Definition** [4] Let (L^X, δ) , (L^Y, μ) be L-fts's, $f \to L^X \to L^Y$ an L-fuzzy mapping. We say $f \to L^Y$ is open if it maps every open subset in (L^X, δ) as an open one in (L^Y, μ) . ie, $\forall U \in \delta, f \to (U) \in \mu$.
- **2.4 Definition** [4] Let (L^X, δ) , (L^Y, μ) be L-fts's, $f \to L^X \to L^Y$ an L-fuzzy mapping. We say $f \to L$ is closed if it maps every closed subset in (L^X, δ) as a closed one in (L^Y, μ) . ie, $\forall F \in \delta'$, $f \to (F) \in \mu'$.
- **2.5 Definition** [4] Let (L^X, δ) be an L-Fts. Then by $[\delta]$ we denote the family of support sets of all crisp subsets in δ . $(X, [\delta])$ is a topology and it is the background space. (L^X, δ) is weakly induced if each $U \in \delta$ is a lower semi continuous function from the background space $(X, [\delta])$ to L.
- **2.6 Definition** [4] For a property P of ordinary topological space, a property P^* of L-Fts is called a good L-extension of P, if for every ordinary topological space (X,T), (X,T) has the property P if and only if $(X,\omega_L(T))$ has property P^* . In particular when L=[0,1] we

say P^* is a good extension of P. Where $\omega_L(T)$ is the family of all lower semi continuous functions from (X,T) to L.

- **2.7 Definition** [4] Let (L^X, δ) be an L-Fts. A fuzzy point x_α is quasi coincident with $A \in L^X$ (and write $x_\alpha \not < A$) if $x_\alpha \not < A'$. Also A quasi coincides with B at x (AqB at x) if $A(x) \not < B'(x)$. We say A quasi coincident with B and write AqB if AqB at x for some $x \in X$. Further $A \rightarrow qB$ means A not quasi coincides with B. We say $U \in \delta$ is a quasi coincident nbd of x_α (Q-nbd) if $x_\alpha \not < U$. The family of all Q-nbds of x_α is denoted by Q_δ (x_α) or $Q(x_\alpha)$.
- **2.8 Definition** [4] Let (L^X, δ) be an L-Fts, $A \in L^X$. $\Phi \subset L^X$ is called a Q-cover of A if for every $x \in Supp(A)$, there exists $U \in \Phi$ such that $x_{A(x)} \triangleleft U$. Φ is a Q-cover of (L^X, δ) if Φ is a Q-cover of Q. If $\alpha \in M(L)$, then $C \in \delta$ is an α -Q-nbd of Q, if $Q \in Q(x_\alpha)$ for every $Q \in A$. $Q \in A$ is called an $Q \in A$ cover of $Q \in A$ if for every $Q \in A$, there exists $Q \in A$ such that $Q \in A$ is called an open $Q \in A$ -cover of $Q \in A$ and $Q \in A$ is an $Q \in A$ -cover of $Q \in A$. There exists $Q \in A$ is called a sub $Q \in A$ -cover of $Q \in A$ and $Q \in A$ is also an $Q \in A$ -cover of $Q \in A$. There exists $Q \in A$ is called a sub $Q \in A$ -cover of $Q \in A$ if $Q \in A$ and $Q \in A$ is also an $Q \in A$ -cover of $Q \in A$.
- **2.9 Definition** [4] Let (L^X, δ) be an L-Fts, $A \in L^X$. A is called N-compact if for every $\alpha \in M(L)$, every open α -Q cover of A has a finite subfamily which is an α -Q-cover of A. (L^X, δ) is called N-compact if \underline{I} is N-compact.
- **2.10 Definition** Let (L^X, δ) , (L^Y, μ) be L-fts's, $f \to L^X \to L^Y$ an L-fuzzy mapping. We say $f \to L^Y$ is perfect if it is continuous, closed and $f \to L^X$ is perfect if it is continuous, closed and $f \to L^X$ and $f \to L^X$ are $f \to L^X$.
- **2.11 Definition** [4] Let (L^X, δ) be an L-Fts. $A = \{A_t : t \in T\} \subset L^X$, $x_\lambda \in M(L^X)$. A is called locally finite at x_λ if there exists $U \in Q(x_\lambda)$ and a finite subset T_0 of T such that $t \in T \setminus T_0 \Rightarrow A_t \neg qU$. And A is *-locally finite at x_λ if $t \in T \setminus T_0 \Rightarrow \chi_{At(0)} \neg qU$. where $At_{(0)} = \{x \in X : A_t(x) \mid 0\}$. A is called locally finite (resp.*-locally finite) for short, if A is locally finite (resp. *-locally finite) at every molecule x_λ of L^X .
- **2.12 Definition** [4] Let (L^X, δ) be an L-Fts. $A \in L^X$, $\alpha \in M(L)$. A is called α -paracompact (resp. α^* -paracompact) if for every open α -Q-cover Φ of A, there exists an open refinement Ψ of Φ such that Ψ is locally finite (resp. *-locally finite) in A and Ψ is also

an α -Q-cover of A. A is called paracompact (resp.*-paracompact) if A is a α -paracompact (resp. α *-paracompact) for every $\alpha \in M(L)$. (L^X , δ) is paracompact (resp.*-paracompact) if \underline{I} is paracompact (resp.*-paracompact). Where a collection A refines B (A B) if for every $A \in A$, $\exists B \in B$ such that $A \leq B$.

2.13 Definition Let (L^X, δ) be an L-Fts. $A = \{A_t : t \in T\} \subset L^X$, $x_\lambda \in M(L^X)$. A is called point finite at x_λ if $x_\lambda \lessdot A_t$ for at most finitely many $t \in T$. And A is *-point finite at x_λ if there exists at most finitely many $t \in T$ such that $x_\lambda \lessdot \chi_{At(0)}$ where $At_{(0)} = \{x \in X : A_t(x) \ 0\}$. A is called point finite (resp. *-point finite) for short, if A is point finite (resp. *-point finite) at every molecule x_λ of L^X .

2.14 Definition Let (L^X, δ) be an L-Fts. $A \in L^X$, $\alpha \in M(L)$. A is called α -metacompact (resp. α^* -metacompact) if every open α -Q-cover of A has a point finite (resp. *-point finite) open refinement which is also an α -Q-cover of A. A is called metacompact (resp. *-metacompact) if A is α -metacompact (resp. α^* -metacompact) for every $\alpha \in M(L)$. And (L^X, δ) is metacompact (resp. *-metacompact) if \underline{I} is metacompact (resp. *-metacompact).

3. A Characterization of Metacompactness

- **3.1 Definition** [4] Let (L^X, δ) be an *L-Fts*. $A = \{A_t : t \in T\} \subset L^X$ is a closure preserving collection if for every subfamily A_{θ} of A_{θ} , cl $[\vee A_{\theta}] = \vee$ cl A_{θ} .
- 3.2 Proposition A point finite closure preserving closed collection is always locally finite.

3.3 Remark

- (i) A collection $U = \{U : U \in U\}$ is locally finite implies that so is $\{cl\ U : U \in U\}$.
- (ii) Similar to the Proposition 3.2 it can be shown that a *-point finite closure preserving collection is always *-locally finite.
- **3.4 Proposition** Let (L^X, δ) be an L-Fts. $\alpha \in M(L)$, $A \in L^X$, $B \in \delta'$. Then
- (i) If A is α -metacompact then so is $A \wedge B$
- (ii) If A is metacompact then so is $A \wedge B$
- 3.5 Remark A result similar to that of Proposition 3.4 can be obtained for α^* -metacompact and *-metacompact spaces also.

From the proposition 3.4 and remark 3.5 it follows clearly that

- 3.6 Theorem α -metacompactness , α^* -metacompactness, α -metacompactness and *-metacompactness are all closed hereditary.
- 3.7 **Theorem** Let (L^X, δ) be a weakly induced L-Fts. Then the following conditions are equivalent.
- (i) (L^X, δ) is metacompact.
- (ii) There exists $\alpha \in M(L)$ such that (L^X, δ) is α -metacompact.
- (iii) $(X, [\delta])$ is metacompact
- **3.8 Theorem** Let (L^X, δ) be a weakly induced *L-Fts*. Then the following conditions are equivalent.
- (i) (L^X, δ) is *-metacompact.
- (ii) There exists $\alpha \in M(L)$ such that (L^X, δ) α^* -metacompact.
- (iii) $(X, [\delta])$ is metacompact
- 3.9 Theorem If (L^X, δ) is a weakly induced L-Fts, then the following are equivalent
- (i) (L^X, δ) is metacompact.
- (ii) For every $\alpha \in M(L)$, every well monotone open α -Q-cover of \underline{I} has a point finite open refinement which is also an α -Q-cover of \underline{I} .
- (iii) There exists an $\alpha \in M(L)$ such that every well monotone open α -Q-cover of \underline{I} has a point finite open refinement which is also an α -Q-cover of \underline{I} .
- 3.10 Lemma Let (L^X, δ) be a weakly induced L-Fts and $\alpha \in M(L)$. Then if every directed open α -Q-cover of \underline{I} has a closure preserving closed refinement which is also an α -Q-cover of \underline{I} then (L^X, δ) is metacompact.
- 3.11 Lemma Let (L^X, δ) be a weakly induced metacompact L-Fts and $\alpha \in M(L)$. Then every directed open α -Q-cover of \underline{I} has a closure preserving closed refinement which is also an open α -Q-cover of \underline{I} .
- **3.12 Lemma** Let (L^X, δ) be an L_T fts and $\alpha \in M(L)$. Then the following are equivalent.
- (i) Every directed open α -Q-cover of \underline{I} has a closure preserving closed refinement which is also an open α -Q-cover of \underline{I} .

(ii) For every α -Q-cover U of \underline{I} , U^F has a closure preserving closed refinement which is also an open α -Q-cover of \underline{I} . Where U^F is the collection of all unions of finite sub collections from U.

Combining Theorem 3.7, 3.9, Lemmas 3.10, 3.11, and 3.12, we get the following characterization of metacompactness in a weakly induced L-Fts.

- **3.13 Theorem** Let (L^X, δ) be a weakly induced L-Fts. Then the following are equivalent (i) (L^X, δ) is metacompact.
 - (ii) There exists $\alpha \in M(L)$ such that (L^X, δ) α -metacompact.
 - (iii) $(X, [\delta])$ is metacompact
 - (iv) For every $\alpha \in M(L)$, every well monotone open α -Q-cover of $\underline{1}$ has a point finite open refinement which is also an α -Q-cover of $\underline{1}$.
 - (v) There exists an $\alpha \in M(L)$ such that every well monotone open α -Q-cover of \underline{I} has a point finite open refinement which is also an α -Q-cover of \underline{I} .
 - (vi) For every $\alpha \in M(L)$, every directed open α -Q-cover of \underline{I} has a closure preserving closed refinement which is also an α -Q-cover of \underline{I} .
 - (vii) There exists an $\alpha \in M(L)$ such that every directed open α -Q-cover of \underline{I} has a closure preserving closed refinement which is also an α -Q-cover of \underline{I} .
 - (viii) For every $\alpha \in M(L)$, every open α -Q-cover U of $\underline{1}$, U^F has a closure preserving closed refinement which is also an α -Q-cover of 1.
 - (ix) There exists an $\alpha \in M(L)$ such that for every open α -Q-cover U of $\underline{1}$, U^F has a closure preserving closed refinement which is also an α -Q-cover of I.

4. Invariant Theorems

- **4.1 Result** If (L^X, δ) and (L^Y, μ) are two weakly induced L-Fts, then
- (i) If the map $f^{\rightarrow}: L^X \rightarrow L^Y$ is L-fuzzy continuous, then $f: (X, [\delta]) \rightarrow (X, [\mu])$ is continuous.
- (ii) If the map $f \to L^X \to L^Y$ is L-fuzzy closed, then $f: (X, [\delta]) \to (X, [\mu])$ is closed.
- (iii) If the map $f \to : L^X \to L^Y$ is L-fuzzy open, then $f: (X, [\delta]) \to (X, [\mu])$ is open.
- **4.2 Theorem** If (L^X, δ) and (L^Y, μ) are two weakly induced L-Fts. Then if $f \to L^X \to L^Y$ is perfect, then so is $f: (X, [\delta]) \to (X, [\mu])$.

Proof

Let $y_{\alpha} \in L^{Y}$. Since $f \to : L^{X} \to L^{Y}$ is perfect, $f \leftarrow (y_{\alpha})$ is N-compact. Now to prove $f: (X, [\delta]) \to (X, [\mu])$ is enough to prove that $f \leftarrow (y)$ is compact for every $y \in Y$. Now let $U \subset [\delta]$ be an open cover of $f \leftarrow (y)$. Consider $U = \{\chi_{u} : U \in U\}$. This is clearly an open α -Q-cover of $f \leftarrow (y_{\alpha})$. For, let $x_{\alpha} \leq f \leftarrow (y_{\alpha})$. i.e, $f \leftarrow (y_{\alpha})(x) = y_{\alpha}(f(x)) \geq \alpha$. Now let $U \in U$ be such that $x \in U$. This is possible since U is a cover of $f \leftarrow (y)$. Then $\chi_{u}(x) \geq y_{\alpha}(x) \geq \alpha$. i.e., $\chi_{u}(x) \geq \alpha$ or $x_{\alpha} \leq \chi_{u}$. Hence clearly $x_{\alpha}q\chi_{u}$. Hence $\{\chi_{u} : U \in U\}$ is an open α -Q-cover of $f \leftarrow (y_{\alpha})$.

Again $f \leftarrow (y_{\alpha})$ being N-compact, there exists a finite sub collection U_s^* of U^* which is also an $\bar{\alpha}$ -Q-cover of $f \leftarrow (y_{\alpha})$. Let $U_s^* = \{\chi_{u1}, \chi_{u2}, \chi_{u3}, \ldots, \chi_{uk}\}$. Then clearly $\{U_1, U_2, \ldots, U_k\}$ will be a finite sub cover of $f^{-1}(y)$. This completes the proof.

Since para(*-para), meta (*-meta) compactnesses are good extensions of para (meta) compactness respectively, we readily have,

- **4.3 Theorem** If (L^X, δ) and (L^Y, μ) are two weakly induced L-Fts and $f \to L^Y$ be a perfect map. Then (L^X, δ) is para(*-para) if and only if (L^Y, μ) is para(*-para).
- **4.4 Theorem** If (L^X, δ) and (L^Y, μ) are two weakly induced L-Fts and $f \to L^X \to L^Y$ be a perfect map. Then (L^X, δ) is meta(*-meta) if and only if (L^Y, μ) is meta(*-meta).
- **4.5 Remark** We remark that for the case of meta (*-meta) compact spaces, we can even relax the restriction on fibers. That is, the condition $f^{\leftarrow}(y)$ is N-compact can be relaxed. In [7] author has proved this result in [0,1] fuzzy context.

Now we give the analogues result in the L-fuzzy context.

4.6 Theorem Let (L^X, δ) and (L^Y, μ) are two weakly induced L-Fts and $f \to L^X \to L^Y$ be continuous and closed. Then if (L^X, δ) is meta (*-meta) then so is (L^Y, μ) .

Proof

Let $U \subset \mu$ be an open α -Q-cover of $\underline{1}$. Now by Theorem 3.13 (viii), it is enough to prove that U^F has a closure preserving closed refinement which is also an α -Q-cover of $\underline{1}$. Given that f^{\rightarrow} is continuous. Therefore $f^{-1}(U) \in \delta$ for any $U \in U$. Let $W = \{f^{-1}(U) \in U \in U\}$ be an open α -Q-cover of $\underline{1}$. Now since $\underline{1}$ is metacompact, it follows that W^F has a closure preserving α -Q-cover refinement say F by closed fuzzy sets. Since f^{\rightarrow} is closed,

it follows that f(F) is closed for every $F \in F$. Now $\{f(F): F \in F\}$ is the required closure preserving closed α -Q-cover of U^F .

ACKNOWLEDEGEMENT

The author is very much indebted to Professor T.Thrivikraman for his constant encouragement and valuable suggestions.

REFERENCES

- [1] Burke, Dennis K "Covering Properties" in Hand Book of Set Theoretic Topology edited by K.Kunen and J.E Vaughan, Elsevier Science Pub. B.V, [1984] pp 349-422.
- [2] Fan, Jiu-Lan Paracompactness and Strong Paracompactness in L-Fuzzy Toplogical Spaces, Fuzzy Systems and Mathematics 4 (1990) 88-94.
- [3] Luo, Mao- Kang, Paracompactness in Fuzzy Topological Spaces, J.Math. Anal. Appl. 130, 55-97 (1988)
- [4] Liu Ying Ming, Luo Mao- Kang Fuzzy Topology, Advances in Fuzzy Systems-Applications and Theory Vol. 9, World Scientific 1997.
- [5] Lupianez F.G, Fuzzy perfect maps and fuzzy paracompactness, Fuzzy sets and systems 98 (1998) 137-140.
- [6] Sunil Jacob John, Fuzzy Topological Games I, Far East J. Math. Sci. Special Vol.(1999) Part III (Geometry and Topology), 361-371.
- [7] Sunil Jacob John, Fuzzy Topological Games, α-Metacompactness, and α-Perfect Maps, Glasnik Mathematicki, Vol.35 (55) (2000), 261-270.
- [8] Sunil Jacob John, Fuzzy Topological Games and Related Topics, Ph.D. Thesis, Cochin University of Science and Technology (2000).
- [9] Sunil Jacob John, Fuzzy P-Spaces Games and Metacompactness Glasnik Mathematicki, to appear in Vol. 38, No.1 (June 2003)
- [10] Sunil Jacob John, *Metacompactness in the L-Fuzzy Context*, The Journal of Fuzzy Mathematics, Vol.8. No.3,(2000) 661-668