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Abstract:

An axiomatic definition of difference operation for intuitionistic fuzzy sets is given.
The analytic expression of the difference operation is also given. At last, the
properties of difference operation are discussed.
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Some operations are defined over the Intuitionistic Fuzzy Sets (IFSs) in [1-3]. Here
we shall introduce a new one, and we shall show some of their basic properties.

Let a set E be fixed. An intuitionistic fuzzy set (IFS) 4 in E is an object of the
following form (see [1]):

A={<x,p,(x),v,(x)>xeE}

where the functions u,:E->[0]] and v,:E ->[0]1] define the degree of

membership and the degree of n¢mmembersﬁp of the element xel?:?, respectively, and
for every xeE, 1

O0<su,(x)+v,(x)<1

For two IFSs 4 and B, the following definitions are valid (see [1]):
AcB iff (VxeEXu,(x)< pp(x) &V (x) 2 vy(x))
A>B iff BcA
A=B iff (VxeEXp,(x)=pz(x)&v,(x)=v,(x))
A ={<xv,(0),p,() > xcE}
Let us take the following set:
D ={(x,y)[0,1]x[0,]]| x+ y <1}
First we introduce operations on D as follows:
Defimition 1. For every (a,,b,)e D,t< T, we define:
tZT(a“b') = (t;/l'at’tg'bt) ’

5B =(5a, 5);

@,b) =(,a,)



Definition 2. For each (a,,b,)e D,i=1,2. We define:
(apb]):(az’bz) !ﬂ q, =az&'bl =b2;
(@,b)<(a,,b,) iff a <a,&b 2b,,
(a,,b) <(a,,b,) iff (@,,b))<(a,,b,) & (@,b) # (a,,b,).
It is easy to prove the following results.

Theorem 1. Let a,a, € D, 1T, then

Y a/\(,;/Tat)ﬁ;/T(a/\a.);;’
) av(é}a,)zé\r(ava,)f

Theorem 2. The system (D, 4,A,v) is a complete lattice with ﬂhe order-reversing

involution“ ' ”. And it has maximal element 1 = (1,0) and minimal element 0 =(0,1).

Definition 3. (see [4]) An intuitionistic fuzzy complementation is a function @
from D tp D such that:

M) =0 and ®0)=1,
(2) Far all x,y € D, if x <y, then ®(x) > D(y).

For each intuitionistic fuzzy set 4, thatis 4 = {< x, B,(x),v, (x) > x € E}, we call

D(4) = {<x, B(u, (x),v,(x)) > x € E}

intuitionistic fuzzy complementary of the intuitionistic fuzzy set A.
Now, we give the axiomatic definition of difference operation for IFSs. In the

following, we write A(x) = (u,(x).,v,(x)) forIFSAand xecE.

Definition 4. For two IFSs 4 and B, we define the difference operation of 4 and B
as follows:

A-B={<x, f(A(x),B(x))>| x € E}

where f:DxD — D, (x,y)+> f(x,y) satisfies the following axioms:

M fxy)<x
(2 f(x0)=x
@) If y<z,then f(x,)2 f(x,2), f(,x) < f(z,%);

@ f (T, x) = ®(x), where @ is an intuitionistic fuzzy complementation.

In the following, we give the analytic expressions of the difference operation for
IFSs.



Definition 5. For two IFSs 4 and B in E, we define the difference operation as
follows:

A= B={<x,1,() AV, (0,V, () V pty(x) >| x € E})

Obviopsly, for two IFSs 4 and B, A-B is an IFS. 1t is easy to prove the following
results:

Theorem 3. Let 4, B, C be IFSs in E, then we have

(1) 4-,Bc 4
(2 A—1¢=A;
3) IfBgC,thenA—,BQA—lC,B—IAgC—lA;
4 A=X- 4

The above property (4) illustrates that the definition of difference operation and the
definition of intuitionistic fuzzy complement given by Atanassov have identity. In fact,

the intuitionistic fuzzy complement A is the special difference operation: X — 4.

Definition 6. (see [4]) A fupctipn @ :[0,1] — [0,1] will be called intuitionistic fuzzy
generator if
o(x) <1-x forall xe [0,1]

An intuitionistic fuzzy generator will be called continuous, decreasing and
increasing if @ is continuous, decreasing and increasing, respectively.

Note that according to the definition above, @(0) <1and @(1) = 0.

Using the intuitionistic fuzzy generator @, we can define the difference operation
over the intuitionistic fuzzy sets as follows

Definition 7. Let @:[0,11>[0,1] be a decreasing intuitionistic fuzzy generator
such that ¢(0)=1, and 4 and B be two IFSs in E. We define
A=y B={<x,1,(x) A @(1- v (), (¥) v (1 - 9, (1)) 5| x € E}

Here, A-, B is an intuitionistic fuzzy set. In fact, for all xec E, Hp(X)+vy(x)<1,
then u,(x)<1-v,(x). Besides @ is decreasing, therefore p(u,(x)) > o(1-vy(x)),

then 0<@(l1-v,(x))+1-p(u 4(x))<1.S0 A-,Bisan intuitionisliic fuzzy set.

Note that if we take @ =N whicqi is the standard negation N, N: [d,l]—)[o,l] given

i

by N(x)=1-x for all xe[0]]) then 4—, B=A- B holds. "l;@j“his means that

il
i
|

Definition 8. Let ¢:[0,1] »>[0,1] be a decreasing intuitionistic ﬁlzzy generator

operation —, is the generalization ofioperation —-4. !‘
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such that @(0) =1, and 4 and B be two IFSs in £. We define |
A=y B={<x,4,() A @(1-v5(x)),v () v @(1 - 1, (x)) >| x € E}
Here, A-, B is an intuitionisti¢ fuzzy set.
In fact, forall xe E, u,(x)+ vi(x) <1, then

P = (X)) + @1 - 115 (x)) S vy (%) + g (x) <1

Therefore, A-, B is an intuitionistic fuzzy set.

Note that if we take @ = N given by N(x)=1-x forall xe [0,1], then we have
A-;B=A-, B. This means the aperation —, is a special case of operation -

In the following, we give the properties of operation —, and operation -5

Theorem 4. Let 4, B and C be intuitionistic fuzzy sets in E. We write the sign “~”
to express the operation —, or operatlon 5, then

1) A-Bc 4

(2) 4-¢=4

3) If Bcc, thenA-—B;A—C,B—AgC—A;

(4) X -A=d(A4). where (D(/#) is the intuitionistic fuzzy comp}‘ementary of IFS
A |

Proof. Only in the case —, we give the proof. The proof of case —, is similar .

The proofs of (1), (2) are straightforward.

(3)Forall xe E, from M5 (x) < p (%), vy (x) 2 v, (%), ie.

1-u, (x)'z I-p.(x)1-v, (x)<1- v (x), considering ¢ is decreasing, we get

Pl = 15 (x)) < (1= p1. (%)), @(1— v, () 2 p(1 - v, (x))

ie.

Ha@)Ap(=vg(x)) 2 i, () A (1 - v, (x)),
Vi@V o= pp(x) < v, (x) v ol - 1 ()

Therefore, from B < C we have 4 3 B2A-,C.

The proof of the formula B -, 4 ﬁ (' --; 4 is similar to above. So \#/e omit it.



(@) X A={<xlnp1-v,(x)0v (- u,(x)> xcE}
= {<x,0(1-v,(0),0( - p,(x)) > x € E}
We write ®(u,(x),v,(x)) = (p(t-v 4 (X)), @(1- u,(x))). In the following, we only
need to prove @ is an intuitionistic fuzzy complementation.

@I p,(x)=landv,(x)=0,then D(L0)=(p(1-0),p(1-1))=(0,1)=0.
If p,(x)=0and v, (x)=1 ,; then (0,1) = (p(1-1),p(1-0)) £ (1,0) = 1.
(b) Let 4, B be two IFSs in E such that A(x) < B(x) forall xe E, thatis
Hy(x) < pg(x)and v, (x) 2 vy (x) for all x € E. Then we have
l-v, () <1-vy(x)and 1- u,(x)21- Hp(x) . Besides ¢is dwre#sing, therefore
P(1-v, () 2 p(1- v, (x)) and p(1- 1, (x)) < (1~ 1, (x)) , that is

D(u,(x),v,(x)) 2 D(u, (x), vg(x)) forall xeE. 0
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