¹Fuzzy Congruence on Rings

Zhang Chengyi¹,Su Jinlin²

¹Dep. of Math. And Comp.Sci., Hainan Normal University, Hainan, Haikou, 571158, P.R. China.

²Dep. of Math., Northwest Minorities University Lanzhou, 730030, P.R. China.

1. Introduction.

N.Kuroki[1,2,3] discussed the concept of a fuzzy congruence relation on a semigroup. F.A.AL-thukair discussed the fuzzy congruence pairs of inverse semigroups. It is natural to define the fuzzy congruence relation on a ring and study a ring R with the fuzzy congruence relation (abbr. FCR)

The purpose of this paper is to introduce the concept of fuzzy congruence, give some homomorphic properties of a ring with fuzzy congruence relation. We obtain that if R is a ring with FCR, then the kernel of FCR is a fuzzy ideal of R. We also prove some homomorphic theorems of a ring R with FCR. Moreover, some applications of the result of this paper are given.

2. Preliminaries.

Let R be a ring. A function α from R×R to the unit interval [0,1] is called a fuzzy relation on R. Let α and β be two fuzzy relations on S, the product α o β of α and β is defined by

$$(\alpha \circ \beta)(a,b) = \sup_{x \in \mathbb{R}} [\min \{\alpha(a,x), \beta(x,b)\}]$$

for all $a,b \in R$, and $\alpha \le \beta$ is defined by $\alpha(x) \le \beta(x)$ for all $x \in R$.

A fuzzy set of a set X is a function μ from X to the unit interval [0,1], and all fuzzy sets of X denote by F(X). As is well-known, $\mu_{\lambda} = \{x \in X \mid \mu(x) \ge \lambda\}$ is a λ -cut set of μ and

$$\mu_{(\lambda)} = \{x \in X \mid \mu(x) > \lambda\}$$
 is a strong λ -cut set of μ .

A fuzzy relation μ on R is called fuzzy equivalence relation on R if

(E.1)
$$\mu(a,a) = 1$$
 for all $a \in R$. (fuzzy reflexive)

(E.2)
$$\mu(a,b) = \mu(b,a)$$
 for all $a,b \in R$. (fuzzy symmetric)

(E.3) $\mu \circ \mu \subseteq \mu$. (fuzzy transitive).

Definition .2.1 If μ is a fuzzy equivalence relation on a ring R, then μ is called a fuzzy congruence relation on R if

(c.1)
$$\mu(a+x,b+x) \ge \mu(a,b)$$
;

(c.2)
$$\mu(ax,bx) \ge \mu(a,b)$$
 and $\mu(xa,xb) \ge \mu(a,b)$

¹ Project supported by the NSF of Hainan(10101)

for all $a,b \in R$.

We denote by χ_f the characteristic function of a binary relation f on R. We denote $\operatorname{Con}(R)$ and $\operatorname{con}_f(R)$ the set of all congruence and the all fuzzy congruence on R respectively. Then we have the following conclusions.

Proposition 2.1 Let f is a binary relation on a ring R. Then f is an equivalence (a congruence) on R if and only if χ_f is a fuzzy equivalence (a fuzzy congruence) on R.

Proof: It is clear by the Theorem 2.4 in [3].

Let μ be a fuzzy equivalence relation R. For each $a \in R$, we define a fuzzy subset μ_a on R as follows:

$$\mu_a(x) = \mu(a, x)$$
 for all $x \in R$.

Then we have the following.

Proposition 2.2 Let μ be a fuzzy congruence relation on R, and let θ be a zero element of R. Then μ_{θ} is a fuzzy ideal of R.

Proof: Let μ be a fuzzy congruence relation on R, and for all $x, y \in R$,

$$\mu_{\theta}(x - y) = \mu(\theta, x - y) = \mu(y - y, x - y) \ge \mu(y, x) = \mu(x, y)$$

$$\ge (\mu \circ \mu)(x, y) = \sup_{z \in R} [\min\{\mu(x, z), \mu(z, y)\}]$$

$$\ge \min\{\mu(x, \theta), \mu(\theta, y)\} = \min\{\mu_{\theta}(x), \mu_{\theta}(y)\}$$

and for all $r \in R$,

$$\mu_{\theta}(rx) = \mu(\theta, rx) = \mu(r\theta, rx) \ge \mu(\theta, x) = \mu_{\theta}(x)$$

Similarly, $\mu_{\theta}(rx) \ge \mu_{\theta}(r)$, then we have $\mu_{\theta}(rx) \ge \max\{\mu_{\theta}(r), \mu_{\theta}(x)\}$, Thus, μ_{θ} is a fuzzy ideal of R.

Proposition 2.3. Let μ be a fuzzy congruence relation on R, and $a \in R$. Then, for all $x \in R$, $\mu_a(x) = \mu_{\theta}(x - a)$.

Proof: we only prove $\mu(a,x) = \mu(\theta,x-a)$ for all $x \in R$.

$$\mu(\theta, x-a) = \mu(a-a, x-a)$$

$$\geq \mu(a, x) \geq (\mu \circ \mu)(a, x)$$

$$= \sup_{y \in R} [\min \{ \mu(a, y), \mu(y, x) \}]$$

$$\geq \min \{ \mu(a, a), \mu(a, x) \}$$

$$= \mu(a, x) = \mu(a, x - a + a)$$

$$\geq \mu(\theta, x - a),$$

Then $\mu_a(x) = \mu_{\theta}(x-a)$ for all $x \in R$.

Proposition 2.4 Let μ be a fuzzy congruence relation on R, then for each $a,b\in R, \ \mu_a=\mu_b$ if and only if $\mu_\theta(a-b)=1$.

Equivalent: $\mu_a = \mu_b$ if and only if $\mu(a,b) = 1$.

Proof: Suppose that $\mu_a = \mu_b$, then for all $x \in R$. $\mu(a,x) = \mu(b,x)$, it implies that $\mu_{\theta}(a-b) = \mu(a-b,\theta) = \mu(a,b) = \mu(b,a) = \mu(a,a) = 1;$

Conversely, if $\mu_{\theta}(a-b) = \mu(\theta, a-b) = 1$, then for all $x \in R$,

$$\mu_{a}(x) = \mu(a, x) \ge \mu(\theta, x + a) \ge (\mu \circ \mu)(\theta, x - a)$$

$$= \sup_{y \in \mathbb{R}} [\min \{ \mu(\theta, y), \mu(y, x - a) \}]$$

$$\ge \min \{ \mu(\theta, b - a), \mu(b - a, x - a) \} = \mu(b - a, x - a)$$

$$\ge \mu(b, x) = \mu_{b}(x).$$

And so $\mu_b \supseteq \mu_a$. By symmetry, we have $\mu_a \subseteq \mu_b$, Thus we obtain that $\mu_a = \mu_b$.

Let μ be a fuzzy congruence relation on R. For all $a,b\in R$, the addition $\mu_a\oplus\mu_b$ and product $\mu_a\circ\mu_b$ of μ_a and μ_b are defined respectively by

$$\mu_a \oplus \mu_b(x) = \begin{cases} \sup_{x=y+z} [\min\{\mu_a(y), \mu_b(z)\}], & \text{if} \quad x=y+z, \\ 0 & \text{if} \quad x \text{ is not expressible as } x=y+z, \end{cases}$$
 and
$$\mu_a \circ \mu_b(x) = \begin{cases} \sup_{x=yz} [\min\{\mu_a(y), \mu_b(z)\}], & \text{if} \quad x=yz \\ 0 & \text{other wise.} \end{cases}$$

Lemma2.5[Proposition in[]] Let μ_{θ} be a fuzzy additive subgroup of R, then for all

 $y, z \in R$, if $\mu_{\theta}(y) \neq \mu_{\theta}(z)$, then $\mu_{\theta}(y+z) = \min\{\mu_{\theta}(y), \mu_{\theta}(z)\}$.

Proposition 2.6 Let μ be a fuzzy congruence relation on R. Then, $\mu_a \oplus \mu_b = \mu_{a+b}$.

Proof: First, we prove the binary operations \oplus are well-defined. Assume that $\mu_a = \mu_b$ and

 $\mu_c = \mu_d$, then by Proposition 2.4, we have $\mu(a,b) = \mu(c,d) = 1$. Thus

$$\mu(a+c,b+d) = \mu_{\theta}((a-b)+(c-d)) \ge \mu_{\theta}(a-b) \land \mu_{\theta}(c-d) = \mu(a,b) \land \mu(c,d) = 1$$

So, we have $\mu_a \oplus \mu_c = \mu_b \oplus \mu_d$.

For each $y, z \in R$ satisfies x = y + z.

$$\mu_{a+b}(x) = \mu(a+b,x) = \mu_{\theta}[x-(a+b)]$$

$$= \mu_{\theta}[y + z - (a+b)]$$

$$\geq \mu_{\theta}(y-a) \wedge \mu_{\theta}(z-b) = \mu(a,y) \wedge \mu(b,z) = \mu_{a}(y) \wedge \mu_{b}(z)$$

thus , $\mu_{a+b}(x) \ge \sup_{x=y+z} [\min\{\mu_a(y), \mu_b(z)\}]$,so we have $\mu_{a+b} \ge \mu_a \oplus \mu_b$.

Conversely, for all $x \in R$, if x can be expressible as $x = y + z, (y, z \in R)$, then

$$\mu_a \oplus \mu_b(x) = \max_{x=y+z} [\min\{\mu(a,y), \mu(b,z)\}]$$

$$\geq \max_{\substack{x=y+z\\x=y+z}} \left[\min\{\mu(a,y),\mu(b,z)\} \right]$$

$$= \max_{x=y+z} \left[\min \{ \mu_{\theta}(y-a), \mu(z-b) \} \right]$$

$$= \max_{x=y+z \atop \mu(a,y)*\mu(b,z)} [\mu_{\theta}(y+z) - (a+b)]$$

$$= \mu(a+b, y+z) = \mu(a+b, x).$$

Then,
$$\mu_a \oplus \mu_b = \mu_{a+b}$$
.

Similarly, we have the following

Proposition 2.7 Let μ be a fuzzy congruence relation on R. Then, $\mu_a \circ \mu_b \subseteq \mu_{ab}$.

Therefore, we define the binary operation * on R/μ as follows:

$$\mu_a * \mu_b = \mu_{ab}$$

By Proposition 2.6 and Proposition 2.7 we have the following:

Theorem2.8 Let μ be a fuzzy congruence relation on a ring R. Then $(R/\mu, \oplus, *)$ is a ring.

Proposition 2.9: Let μ be a fuzzy congruence relation on R. Then

 $\mu^{-1}(1) = \{(a,b) | \mu(a,b) = 1, a,b \in R\}$ is a congruence relation on R.

Proof: By Lemma 2.4 in [1], $\mu^{-1}(1)$ is a fuzzy equivalence relation on \mathbb{R} and

$$(ax,bx) \in \mu^{-1}(1), (xa,xb) \in \mu^{-1}(1).$$

Moreover, for $x \in R$, $\mu(a+x,b+x) \ge \mu(a,b) = 1$, which implies that

 $\mu(a+x,b+x)=1$,that is $(a+x,b+x)\in \mu^{-1}(1)$. Thus $\mu^{-1}(1)$ is a congruence relation on R.

3. Homomorphism Theorems

Let R and \overline{R} be two rings and f a homomorphism of R to \overline{R} . Then, the relation.

$$\ker(f) = \{(a,b) | f(a) = f(b), a, b \in R\}$$

is a congruence relation on R . Then, the characteristic function $\chi_{\ker(f)}$ is a fuzzy congruence relation on R. and

$$\chi_{\ker(f)}(a,b) = \begin{cases} 1 & \text{if } f(a) = f(b) \\ 0 & \text{if } f(a) \neq f(b) \end{cases}$$

Theorem 3.1 Let μ be a fuzzy congruence relation on R. and

Let $(R/\mu, \oplus, *)$ be a ring .The mapping $\mu^{\#}: R \to R/\mu$ defined by,

for $a \in R$, $\mu^{\#}(a) = \mu_a$.

Then $\mu^{\#}$ is a homomorphism.

Proof: It is dear.

Theorem 3.2 Let R and R be two rings and $f:R \to R$ a homomorphism,

Then the fuzzy kernel $\chi_{\ker(f)}$ is a fuzzy congruence on R, and there is a homomorphism

$$g: R/\chi_{\ker(f)} \to \overline{R}$$
 such that $f = g \circ (\chi_{\ker(f)})^{\#}$.

Proof: Let $a,b \in R$, By the definition $\mu^{\#}$, we have

$$\mu^{\#}(a+b) = \mu_{a+b} = \mu_a \oplus \mu_b = \mu^{\#}(a) \oplus \mu^{\#}(b)$$

and
$$\mu^{\#}(ab) = \mu_{ab} = \mu_a * \mu_b = \mu^{\#}(a) * \mu^{\#}(b)$$
.

Now we define $g: R/\chi_{\ker(f)} \to \overline{R}$ by $g((\chi_{\ker(f)})_a) = f(a)$ for all $a \in R$.

If for all $a, b \in R$, $(\chi_{\ker(f)})_a = (\chi_{\ker(f)})_b$, then $\chi_{\ker(f)}(a, b) = 1$.

So $(a,b) \in \ker(f)$. Thus we have

$$g((x_{\ker(f)})_a) = f(a) = f(b) = g((x_{\ker(f)})_b),$$

This means that g is well-defined.

If
$$f(a) = f(b)$$
, then $(a,b) \in \ker(f)$, $x_{\ker(f)}(a,b) = 1$. It implies that

$$(x_{\ker(f)})_a = (x_{\ker(f)})_b$$
, g is one-to-one. Let $a, b \in R$,

$$g((x_{\ker(f)})_a \oplus (x_{\ker(f)})_b) = g((x_{\ker(f)})_{a+b})$$

$$= f(a+b) = f(a) + f(b)$$

$$=g((x_{\ker(f)})_a)+g((x_{\ker(f)})_b)$$

$$= g((x_{\ker(f)})_a * (x_{\ker(f)})_b) = g((x_{\ker(f)})_{ab})$$

$$= f(ab) = f(a)f(b) = g((x_{\ker(f)})_a) \bullet g((x_{\ker(f)})_b)$$

Then g is a homomorphism.

Let
$$a \in R$$
, $g((x_{\ker(f)})^{\#})(a) = g((x_{\ker(f)})_a) = f(a)$.

So we obtain that

$$g \circ (x_{\ker(f)})^{\#} = f$$
.

Theorem 3.3 Let μ and ν be fuzzy congruence relations on R . such that $\mu \subseteq \nu$. Then there is on unique homomorphism

$$g: R/\mu \to R/\nu$$
 such that $g \circ \mu^{\#} = \nu^{\#}$.

and $\frac{R/\mu}{\chi_{\ker(g)}}$ is isomorphic to R/ν .

Proof: Define $g: R/\mu \to R/\nu$ by setting

$$g(\mu_a) = \nu_a$$
 for all $a \in R$.

Assume that $\mu_a = \mu_b$, then , $1 = \mu(a,b) \le \nu(a,b)$.

So v(a,b) = 1, that is, $v_a = v_b$, then g is well-defined.

The remainder of the proof is clear.

References

- [1] N. Kuroki, Fuzzy congruences and fuzzy normal subgroups. Inform. Sci. 1992, 60:247-259.
- [2] N.Kuroki, Fuzzy congruences on inverse semigroups. Fuzzy Sets and Systems, 1997, 87:335-340.
- [3] N.Kuroki, Fuzzy ideals and bi-ideals in semigroups, Fuzzy Sets and Systems, 1981, 5:203-215.
- [4]F.AL-Thukair, Fuzzy congruence pairs of inverse semigroups, Fuzzy Sets and Systems, 1993, 56:117-122.
- [5]Zhang Chengyi etc,On the Equal-height Elements of the Fuzzy Subgroups,Chinese Quarterly Journal of Mathmatics,2001,16(2):82-85.