Fuzzy Pre-Urysohn Spaces *

Bai Shi-Zhong

Dept. of Mathematics Wuyi University, 529020 Jiangmen, Guangdong, P.R. China

Abstract: In this paper, the new concept of fuzzy pre-Urysohn spece in fuzzy topological spaces is introduced. It is a kind of new fuzzy space bettwen fuzzy weakly Urysohn spece and fuzzy PS-Urysohn Space. Its characteristic properties and basic properties are studied.

Keywords: Fuzzy topological space; Remote-neighborhood; Preclosed set; Pre-Urysohn Space

1 Introduction

Urysohn space[5] is one of the important notions in topology. Chen and Xiao introduced the fuzzy Urysohn space[7] and fuzzy weakly Urysohn space[8] in fuzzy topological spaces, respectively. And we introduced the fuzzy PS-Urysohn space in fuzzy topological spaces in [4]. The main purpose of this paper is to introduce and study the concept of the fuzzy pre-Urysohn space in fuzzy topological spaces with the help of the remote-neighborhood[11] and fuzzy preinterior of fuzzy sets[3]. The fuzzy pre-Urysohn space is a kind of new fuzzy space bettwen fuzzy weakly Urysohn spece and fuzzy PS-Urysohn Space. And some of its good results are obtained.

2 Preliminaries

By a fuzzy topological space(fts, for short), we mean the pair (X, δ) where X is a nonempty crisp set and δ a subset of I^X satisfying the open set axiom as usually mentioned in general topology, i.e., we follow the definition of fuzzy topological space given in [6]. For a fuzzy set A in X, the notations A^o , A^- , A_o , A_- and A'

^{*}Project supported by the National Natural Science Foundation of China

will respectively stand for the interior, closure, semiinterior, semiclosure and complement of A.

Definition 2.1 (Bai [1,2]). Let (X, δ) be an fts and A be a fuzzy set in X. Then A is said to be

- (1) Fuzzy strongly semiopen set iff there is a $B \in \delta$ such that $B \leq A \leq B^{-o}$.
- (2) Fuzzy strongly semiclosed set iff there is a $B' \in \delta$ such that $B^{o-} \leq A \leq B$.
- (3) Fuzzy pre-semiopen set iff $A \leq (A^{-})_{o}$.
- (4) Fuzzy pre-semiclosed set iff $A \ge (A^o)_-$.

Definition 2.2(Bai [1,2]). Let (X, δ) be an fts and A be a fuzzy set in X. Then

 $A^{\Delta} = \bigcup \{B : B \leq A, B \text{ fuzzy strongly semiopen } \},$

 $A^{\sim} = \bigcap \{B : A \leq B, B \text{ fuzzy strongly semiclosed } \}$

 $A_{\Delta} = \bigcup \{B : B \leq A, B \text{ fuzzy pre-semiopen } \},$

 $A_{\sim} = \bigcap \{B : A \leq B, B \text{ fuzzy pre-semiclosed } \}$

are called the strong semiinterior, strong semiclosure, pre-semiinterior and presemiclosure of A, respectively.

Definition 2.3 (Singal [10]). Let (X, δ) be an fts and A be a fuzzy set in X. Then A is said to be

- (1) Fuzzy preopen set iff $A \leq A^{-o}$.
- (2) Fuzzy preclosed set iff $A \ge A^{o-}$.

PO(X) and PC(X) will always denote the family of fuzzy preopen sets and family of fuzzy preclosed sets of an fts (X, δ) , respectively. Obviously, $A \in PO(X)$ iff $A' \in PC(X)$.

Definition 2.4(Bai [3]). Let (X, δ) be an fts and A be a fuzzy set in X. Then

$$A_{\square} = \bigcup \{B : B \in PO(X), B \le A\},\$$

$$A_{\frown} = \bigcap \{B : B \in PC(X), A \le B\}$$

are called the preinterior and preclosure of A, respectively.

Remark 2.5. Every fuzzy open set is a fuzzy strongly semiopen set, every fuzzy strongly semiopen set is a fuzzy preopen set and every fuzzy preopen set is a fuzzy pre-semiopen set[1,2]. That none of the converses need be true[1,2].

Obviously,

$$A^o \le A^{\Delta} \le A_{\square} \le A_{\Delta} \le A$$
.

$$A \leq A_{\sim} \leq A_{\cap} \leq A^{\sim} \leq A^{-}.$$

$$A \leq B \Rightarrow A_{\square} \leq B_{\square}; A_{\cap} \leq B_{\cap}.$$

$$0_{\square} = 0; 0_{\cap} = 0; 1_{\square} = 1; 1_{\cap} = 1.$$

$$(A_{\square})_{\square} = A_{\square}; (A_{\cap})_{\cap} = A_{\cap}.$$

$$A \in PO(X) \text{ iff } A_{\square} = A.$$

$$A \in PC(X) \text{ iff } A_{\cap} = A.$$

Definition 2.6(Pu [9]). Let (X, δ) be an fts. A fuzzy net $S = \{S(n), n \in D\}$ in (X, δ) is a function $S: D \to \xi$ where D is a directed set with order relation \geq and ξ the collection of all the fuzzy points in X.

Definition 2.7 (Wang [11]). Let (X, δ) be an fts, x_{λ} be a fuzzy point and P a fuzzy closed set in X. Then P is called a remoted-neighborhood of x_{λ} , if $x_{\lambda} \notin P$. The set of all remote-neighborhoods of x_{λ} will be denoted by $\eta(x_{\lambda})$.

Definition 2.8. An fts (X, δ) is called a fuzzy Hausdorff space (fuzzy Urysohn space, fuzzy weakly Urysohn space, fuzzy PS-Urysohn space) If for every pair fuzzy points x_{λ} and y_{μ} with $x \neq y$, there exist $P \in \eta(x_{\lambda})$ and $Q \in \eta(y_{\mu})$ such that $P \cup Q = 1$ ($P^{o} \cup Q^{o} = 1$, $P^{\Delta} \cup Q^{\Delta} = 1$, $P_{\Delta} \cup Q_{\Delta} = 1$)[4,7,8,12].

3 Fuzzy Pre-Urysohn Spaces

Definition 3.1. Let (X, δ) be an fts. If for every pair fuzzy points x_{λ} and y_{μ} with $x \neq y$, there exist $P \in \eta(x_{\lambda})$ and $Q \in \eta(y_{\mu})$ such that $P_{\square} \cup Q_{\square} = 1$, then (X, δ) is said to be fuzzy pre-Urysohn space.

Corollary 3.2. Fuzzy Urysohn space

- ⇒ fuzzy weakly Urysohn space
- \Rightarrow fuzzy pre-Urysohn space
- ⇒ fuzzy PS-Urysohn space
- ⇒ fuzzy Hausdorff space.

Proof. This is immediate from Definitions 3.1, 2.8.

Definition 3.3. An fts (X, δ) is called preinterior additive if $(A \cup B)_{\square} = A_{\square} \cup B_{\square}$ for any two fuzzy sets A and B in X.

Theorem 3.4. Let (X, δ) be a fuzzy pre-Urysohn space. Then every preinterior additive subspace $(Y, \delta \mid Y)$ in (X, δ) is also a fuzzy pre-Urysohn space.

Proof. Let x_{λ} and y_{μ} be two fuzzy points in $(Y, \delta \mid Y)$ with $x \neq y$, x^*_{λ} and y^*_{μ} be extensions of x_{λ} and y_{μ} in (X, δ) , respectively. Since (X, δ) is a fuzzy pre-Urysohn space and $x \neq y$, there exist $P \in \eta(x^*_{\lambda})$ and $Q \in \eta(y^*_{\mu})$ such that $P_{\square} \cup Q_{\square} = 1$. Again, by $(Y, \delta \mid Y)$ is preinterior additive and Theorem —2.7.3 in [12], we have

$$(P \mid Y)_{\Box} \cup (Q \mid Y)_{\Box} = ((P \mid Y) \cup (Q \mid Y))_{\Box}$$

= $((P \cup Q) \mid Y)_{\Box} \ge ((P_{\Box} \cup Q_{\Box}) \mid Y)_{\Box}$
= $(1 \mid Y)_{\Box} = 1_{Y}.$

Thus, $(Y, \delta \mid Y)$ is a fuzzy pre-Urysohn space.

Lemma 3.5. Let $f:(X,\delta)\to (Y,\tau)$ be a fuzzy homeomorphic mapping[12] from a fuzzy space (X,δ) to another fuzzy space (Y,τ) . If A is a fuzzy preopen set of (X,δ) , then f(A) is a fuzzy preopen set of (Y,τ) .

Proof. Let A is a fuzzy preopen set of (X, δ) . Then $A \leq A^{-o}$. Hence, $f(A) \leq f(A^{-o})$. Since f is a fuzzy homeomorphic mapping,

$$f(A^{-o}) = (f(A))^{-o}$$
, i.e., $f(A) \leq (f(A))^{-o}$.
Thus, $f(A)$ is a fuzzy preopen set of (Y, τ) .

Theorem 3.6. Let $f:(X,\delta)\to (Y,\tau)$ be a fuzzy homeomorphic mapping from a fuzzy pre-Urysohn space (X,δ) to another fuzzy space (Y,τ) . Then (Y,τ) is also a fuzzy pre-Urysohn space.

Proof. Let y_{λ} and y^*_{μ} be two fuzzy points in (Y,τ) with $y \neq y^*$. Then there are two fuzzy points x_{λ} and x^*_{μ} in (X,δ) with $x \neq x^*$ such that $f(x_{\lambda}) = y_{\lambda}$ and $f(x^*_{\lambda}) = y^*_{\lambda}$. Since (X,δ) is a fuzzy pre-Urysohn space, there exist $P \in \eta(x_{\lambda})$ and $Q \in \eta(x^*_{\lambda})$ such that $P_{\square} \cup Q_{\square} = 1$. Again, since f is a fuzzy homeomorphic mapping, we have $f(P) \in \eta(y_{\lambda})$ and $f(Q) \in \eta(y^*_{\mu})$. By Lemma 3.5

$$(f(P))_{\square} \cup (f(Q))_{\square} \ge (f(P_{\square}))_{\square} \cup (f(Q_{\square}))_{\square}$$

= $f(P_{\square}) \cup f(Q_{\square}) = f(P_{\square} \cup Q_{\square})$
= $f(1) = 1$.

Thus, (Y, τ) is a fuzzy pre-Urysohn space.

4 The Characterizations of Fuzzy Pre-Urysohn Spaces

Theorem 4.1. A fuzzy topological space (X, δ) is a fuzzy pre-Urysohn space iff for every pair fuzzy points x_{λ} and y_{μ} with $x \neq y$ and $\lambda < 1, \mu < 1$, there exist $U \in \delta$ and $V \in \delta$ such that $x_{\lambda} \in U, y_{\mu} \in V$ and $U \cap V \cap U = 0$.

Proof. Let (X, δ) be a fuzzy pre-Urysohn space, x_{λ} and y_{μ} be two fuzzy points in X with $x \neq y$ and $\lambda < 1, \mu < 1$. Choose two real numbers r and s satisfying $0 < r < 1 - \lambda$ and $0 < s < 1 - \mu$. Then there exist $P \in \eta(x_r)$ and $Q \in \eta(y_s)$ such that $P_{\square} \cup Q_{\square} = 1$. Put U = P' and V = Q'. Then $U \in \delta$ and $V \in \delta$ and

$$U_{\frown} \cap V_{\frown} = (P')_{\frown} \cap (Q')_{\frown} = (P_{\Box})' \cap (Q_{\Box})' = (P_{\Box} \cup Q_{\Box})' = 0.$$

Conversely, let the given condition hold. Suppose x_{λ} and y_{μ} are two fuzzy points with $x \neq y$. Choose two real numbers r and s satisfying $1 - \lambda < r < 1$ and $1 - \mu < s < 1$. By hypothesis there exist $U \in \delta$ and $V \in \delta$ such that $x_r \in U, y_s \in V$ and $U \cap V = 0$. Put P = U' and Q = V'. Then $P \in \eta(x_{\lambda}), Q \in \eta(y_{\mu})$ and

$$P_{\Box} \cup Q_{\Box} = (U')_{\Box} \cup (V')_{\Box} = (U_{\frown})' \cup (V_{\frown})' = (U_{\frown} \cap V_{\frown})'1.$$

Thus, (X, δ) is a fuzzy pre-Urysohn space.

Definition 4.2. Let (X, δ) be an fts, $S = \{S(n), n \in D\}$ a fuzzy net in X and x_{λ} a fuzzy point. Then x_{λ} is said to be a PW-limit point of S (or S PW-converges to x_{λ}), if for each $P \in \eta(x_{\lambda}), S(n) \not\leq P_{\square}$ is eventually true.

Theorem 4.3. An fts (X, δ) is a fuzzy pre-Urysohn space iff no fuzzy net in X can PW-converge to two fuzzy points x_{λ} and y_{μ} with $x \neq y$.

Proof. Let (X, δ) be a fuzzy pre-Urysohn space, $S = \{S(n), n \in D\}$ be a fuzzy net in X which PW-converges to a fuzzy point x_{λ} , and y_{μ} be another with $x \neq y$. Then there exist $P \in \eta(x_{\lambda})$ and $Q \in \eta(y_{\mu})$ such that $P_{\square} \cup Q_{\square} = 1$. Since $S(n) \not\leq P_{\square}$ is eventually true, therefore, S(n) is eventually in Q_{\square} . Thus, S does not PW-converge to y_{μ} .

Conversely, assume that the condition is true and that x_{λ} and y_{μ} are two fuzzy points with $x \neq y$. If for every $P \in \eta(x_{\lambda})$ and $Q \in \eta(y_{\mu})$, $P_{\square} \cup Q_{\square} \neq 1$, then there exists a fuzzy point $S(P,Q) \notin P_{\square} \cup Q_{\square}$. Take

$$S = \{ S(P,Q) : (P,Q) \in \eta(x_{\lambda}) \times \eta(y_{\mu}) \}.$$

Then S is a net in X With the following relation:

 $(P_1, Q_1) \le (P_2, Q_2)$ iff $P_1 \le P_2$ and $Q_1 \le Q_2$

Where $(P_1, Q_1), (P_2, Q_2) \in \eta(x_{\lambda}) \times \eta(y_{\mu})$. Obviously, eventually $S(n) \not\leq P_{\square}$, so S PW-converges to x_{λ} . Similarly, S PW-converges to y_{μ} as well. This contradicts the hypothesis. Consequently,there are $P \in \eta(x_{\lambda})$ and $Q \in \eta(y_{\mu})$ such that $P_{\square} \cup Q_{\square} = 1$. Thus, (X, δ) is a fuzzy pre-Urysohn space.

Definition 4.4. An fts (X, δ) is called interior additive if $(A \cup B)^o = A^o \cup B^o$ for any two fuzzy sets A and B in X.

Proposition 4.5. Let (X, δ) be a interior additive fts. Then (X, δ) is a fuzzy Urysohn space iff it is a fuzzy Hausdorff space.

Proof. Necessity. This is immediate from Corollary 3.2.

Sufficiency. Let x_{λ} and y_{μ} be two fuzzy points in (X, δ) with $x \neq y$. Since (X, δ) is a fuzzy Hausdorff space, there exist $P \in \eta(x_{\lambda})$ and $Q \in \eta(y_{\mu})$ such that $P \cup Q = 1$. Again, since (X, δ) is interior additive,

$$P^o \cup Q^o = (P \cup Q)^o = 1.$$

Thus, (X, δ) is a fuzzy Urysohn space.

From Corollary 3.2 and Proposition 4.5 we have following results.

Theorem 4.6. Let (X, δ) be a interior additive fts. Then

 (X, δ) is a fuzzy Urysohn space

 $\Leftrightarrow (X, \delta)$ is a fuzzy weakly Urysohn space

 $\Leftrightarrow (X, \delta)$ is a fuzzy pre-Urysohn space

 $\Leftrightarrow (X, \delta)$ is a fuzzy PS-Urysohn space

 $\Leftrightarrow (X, \delta)$ is a fuzzy Hausdorff space.

References

- [1] S.Z.Bai, Fuzzy strongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets and Systems 51(1992) 345-351.
- [2] S.Z. Bai, Fuzzy pre-semiopen sets and fuzzy pre-semicontinuity, Proc.ICIS'92 (1992)918-920.
- [3] S.Z. Bai, The P-compactness in L-fuzzy topological spaces, Fuzzy Systems Math. 8(1994)260-262.

- [4] S.Z. Bai, Fuzzy PS-Urysohn spaces, BUSEFAL,
- [5] M.P.Berri, J.R.Porter, R.M.Stephenson, A survry of minimal topological spaces, General Topology and its Relations to Modern Analysis and Algebra III, Academia, Prague, 1971,93-114.
- [6] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl.24(1968) 182-190.
- [7] S.Chen, Fuzzy Urysohn spaces and α -stratified fuzzy Urysohn spaces, Fifth IFSA world congress 1993, 453-456.
- [8] J.H.Xiao, Fuzzy weakly Urysohn spaces, BUSEFAL, 75(1998) 110-115.
- [9] B.M.Pu, Y.M.Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J.Math.Anal.Appl. 76(1980) 571-599.
- [10] M.K.Singal, N.Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44(1991) 273-281.
- [11] G.J. Wang, A new fuzzy compactness defined by fuzzy nets, J.Math.Anal. Appl.94(1983)1-23.
- [12] G.J.Wang, Theory of L-fuzzy Topological Spaces, Press of Shaanxi Normal University, Xi'an, China, 1988.