The necessary and sufficient condition that a fuzzy set is a pointwise fuzzy group

Wen-Xiang Gu^a Su-yun Li^b

- a Department of Computer Science, Northeast Normal University, ChangChun, JiLin, 130024, China
- b Department Of Mathematics, Jilin Province college of Education, 130022, Changchun, China

Abstract: 1971 Rosenfeld gave the concept of fuzzy group in [1] and 1981 Qi Zhen-Kai Gave the definition of pointwise fuzzy group in [2]. In this paper we gave a necessary and sufficient condition that a fuzzy set is a pointwise fuzzy group.

Keywords: fuzzy set; fuzzy group; pointwise fuzzy group.

1. Preliminaries

Let X be a nonempty set. A fuzzy set A is a map A: $X \rightarrow [0,1]$, and F(X) will denote the fuzzy power set of X.. We first recall some basic definitions and results that will be needed in the sequel.

Definition 1.1 [1] Let G be a group and $A \in F(G)$. If

- (i) $A(xy) \ge \min(A(x), A(y)), x, y \in G$;
- (ii) $A(x^{-1}) \geqslant A(x), x \in G$,

then A is called a fuzzy group on G.

Definition 1.2 Let X be a nonempty set, $x \in X$, $\lambda \in [0, 1]$, $x_{\lambda} \in F(X)$ and $y \in X$, define

$$x_{\lambda}(y) = \begin{cases} \lambda, y = x \\ 0, y \neq x \end{cases}$$

 x_{λ} is called a fuzzy point on X.

Clearly, if $\lambda \neq 0$, $x_{\lambda} = y_{\mu}$ iff x = y, $\lambda = \mu$; $x_{\lambda} \subseteq y_{\mu}$ iff x = y, $\lambda \leq \mu$.

we define $a_{\lambda} \in A \Leftrightarrow a_{\lambda} \subseteq A$

Proposition 1.3 $a_{\lambda} \in A \Leftrightarrow A(a) \ge \lambda$

Proof. If $a_{\lambda} \in A$, then $\lambda = a_{\lambda}(a) \leq A(a)$. If $A(a) \geq \lambda$, then $a_{\lambda} \subseteq A$ hence $a_{\lambda} \in A$.

Definition1. 4 Let X be a nonempty set and $A \in F(X)$. If there exists a rule, for any a_{λ} , $b_{\mu} \in A$, there is only one $c_{\nu} \in A$ corresponding to them, $v = \min\{\lambda, \mu\}$, and for any a_s , $b_t \in A$, the element corresponding to them must be $c_r \in A$, $r = \min\{s,t\}$. We call this rule the multiplication of A, c_{ν} the product of a_{λ} and b_{μ} , which is written as $c_{\nu} = a_{\lambda} b_{\mu}$. We also call A forms a pointwise fuzzy groupoid with regard to this multiplication .

Definition 1.5 Let A be a pointwise fuzzy groupoid on X. Then A is called a pointwise fuzzy semigroup if, for any a_{λ} , b μ , $c_{\nu} \in A$,

$$(a_{\lambda}b_{\mu})c_{\nu}=a_{\lambda}(b_{\mu}c_{\nu}).$$

Definition1.6 Let A be a pointwise fuzzy groupoid on X. If there exists $e_{\lambda} \in A$ satisfying

 $e_{\lambda}a_{\mu}=a_{\mu}$ for any $a_{\mu}\in A$.

Then e_{λ} is called a left identify of A. Similarly we can define the right identify of A. If e_{λ} is both a left and a right identify of A, then e_{λ} is called the identify of A.

Proposition 1.7 If the pointwise fuzzy groupoid A on X has a left identify e_{λ} and a right identify f_{μ} , then $e_{\lambda}=f_{\mu}$.

Proof. Since e_{λ} is a left identify, hence $e_{\lambda}f_{\mu}=f_{\mu}.$

Since f_{μ} is a right identify, hence $e_{\lambda}f_{\mu}=e_{\lambda}$.

Therefore, $e_{\lambda} = f_{\mu}$.

Corollary. The identify of pointwise fuzzy groupoint A on X is unique if it exist.

Proposition 1.8 If e_{λ} is the left identify of pointwise fuzzy groupoid A on X, then $A(x) \leq \lambda$ holds for all $x \in X$. Proof. For all $x \in X$, since e_{λ} is a left identify, hence $e_{\lambda} X_{A(x)} = X_{A(x)}$.

Therefore , $A(x)=\min\{A(x), \lambda\}$ by Definition1.3 and $\min\{A(x), \lambda\} \le \lambda$. So that $A(x) \le \lambda$.

Proposition 1.9 If e_{λ} is a left identify of pointwise fuzzy groupoid A on X, then $\lambda = A(e)$.

Proof. Since $e_{\lambda} \in A$, hence $A(e) \ge \lambda$ by Proposition1.3. Since e_{λ} is a left identify and $e \in X$ hence $A(e) \le \lambda$ by

Proposition 1.8. Therefore, $A(e) = \lambda$.

Definition 1.10 Let A be a pointwise fuzzy groupoid on X and suppose A has the left identify e_{λ} . If for $a_{\mu} \in A$, there exists $b_{s} \in A$ satisfying $b_{s}a_{\mu}=e_{\mu}$, then b_{s} is called a left inverse of a_{μ} . Similarly we can define the right inverse of a_{μ} .

Definition 1.11 Let A be a pointwise fuzzy semigroup on X. If

- (1) there exists a left identify $e_{\lambda} \in A$, and if
- (2) for any $a_{\nu} \in A$, there is at least a left inverse in A. Then A is called a pointwise fuzzy group on X.

Example 1.12 Let X be a group and suppose A is a fuzzy group on X (see Definition1.1), then A is a poindwise fuzzy group on X.

Proof. For any x_{λ} , $y_{\mu} \in A$, let

$$x_{\lambda}y_{\mu} = (xy)_{\nu}, \quad v = min\{\lambda, \mu\}$$

(1-1)

Then A forms a pointwise fuzzy groupoid with respect to the rule (1-1). Since X is a group, hence we have, for any x, y_{μ} , $z_{\nu} \in A$

$$(\chi_{\lambda} y_{\mu})_{Z_{v}} = (\chi y)_{\min\{\lambda, \mu\}} Z_{v} = ((\chi y)_{\min\{\min\{\lambda, \mu\}, v\}} = (\chi(y_{Z}))_{\min\{\mu, \mu\}} = \chi_{\lambda} (y_{Z})_{\min\{\mu, v\}} = \chi_{\lambda} (y_{\mu} Z_{v})$$

so A is a pointwise fuzzy simegroup on X.

Since A is a fuzzy group on X, hence when e is the unit of X, for all $x \in X$

$$A(e) = A(xx^{-1}) \ge \min\{A(x), A(x^{-1})\} = A(x).$$

Therefore, we also have, for all $x_{\mu} \in A$

$$e_{A(e)}X_{\mu} = (e_X)_{\min\{A(e), \mu\}} = X_{\mu},$$

so $e_{A(e)}$ is the left identify of A .

If $x_{\mu} \in A$, in case of $A(x^{-1}) \geqslant A(x) \geqslant \mu$, then $(x^{-1})_{\mu} \in A$, and $(x^{-1})_{\mu} x_{\mu} = (x^{-1}x)_{\min(\mu, \mu)} = e_{\mu},$

Hence x_{μ} has a left inverse $(x^{-1})_{\mu} \in A$ and A is a pointwise fuzzy group on X.

2. The necessary and sufficient condition that a fuzzy set is a pointwise fuzzy group

Theorem 2.1 Let X be a nonempty set and $A \in F(X)$. Then A is a pointwise fuzzy group iff A is a pointwise fuzzy groupoid and in agreement with the following conditions:

- (1) $(a_{\lambda}b_{\mu})c_{\nu} = a_{\lambda}(b_{\mu}c_{\nu})$ for any a_{λ} , b_{μ} , $c_{\nu} \in A$.
- (2) There exists a left identify $e_{\lambda} \in A$ such that $e_{\lambda} x_{\mu} = x_{\mu}$ for any $x_{\mu} \in A$.
- (3) For any $x_{\mu} \in A$, there exists at least a left inverse $y_{\nu} \in A$ such that

$$y_{\nu}x_{\mu} = e_{\mu}$$
.

Proof. If A is a pointwise fuzzy group, then A is a pointwise fuzzy semigroup by Definition1. 11 and so A is a pointwise fuzzy groupoid and satisfying conditions (1), (2) and (3). If A is a pointwise fuzzy groupoid and in agreement with conditions (1), (2) and (3), then A is a pointwise fuzzy semigroup by Definition1. 5 and A is a pointwise fuzzy group by Definition1. 11.

According to Theorem2.1 we can give a new definition of pointwise fuzzy group equivalent to Definition1.11. Definition2.2 Let X be a nonempty set and $A \in F(X)$. If there exists a rule, for any a_{λ} , $b_{\mu} \in A$, there is only one $c_v \in A$ corresponding to them, $v = \min\{\lambda, \mu\}$, and for any a_s , $b_t \in A$, the element corresponding to them must be $c_r \in A$, $r = \min\{s, t\}$. We call this rule the multiplication of A, c_v the product of a_λ and b_μ , which is written as $c_v = a_\lambda b_\mu$. And the multiplication and in agreement with the following conditions:

- (1) $(a_{\lambda}b_{\mu})c_{\nu} = a_{\lambda}(b_{\mu}c_{\nu})$ for any a_{λ} , b_{μ} , $c_{\nu} \in A$.
- (2) There exists a left identify $e_{\lambda} \in A$ such that $e_{\lambda} x_{\mu} = x_{\mu}$ for any $x_{\mu} \in A$.
- (3) For any $x_{\mu} \in A$, there exists at least a left inverse y $_{\nu} \in A$ such that

$$y_{\nu}x_{\mu} = e_{\mu}$$
.

Then A is called a pointwise fuzzy group on X.

If X is a group and A is a fuzzy group on X. Let, for any a_{λ} , $b_{\mu} \in A$

$$a_{\lambda}b_{\mu} = (ab)_{\min\{\lambda, \mu\}}$$

Then A is a pointwise fuzzy group on X by Example 1.12.

Theorem2. 3 Let X be a nonempty set and A a pointwise fuzzy semigroup on X. Then A is a pointwise fuzzy group on X iff for any a_{λ} , $b_{\mu} \in A$, $v = \min\{\lambda, \mu\}$,

$$a_v x_v = b_v$$
 and $y_v a_v = b_v$

has a solution in A.

Proof. First we prove the sufficient. For any $a_{\lambda} \in A$, since $y_{\lambda} a_{\lambda} = a_{\lambda}$

has a solution in A, hence there is a $e_{\lambda}\!\in\!A$ satisfying $e_{\lambda}a_{\lambda}\,=\,a_{\lambda}$

For another any $b_{\mu} \in A$, let $v = \min\{\lambda, \mu\}$. Since $a_{\nu}x_{\nu} = b_{\nu}$

has a solution in A , so there exists a $c_v \in A$ satisfying $a_v c_v = b_v$.

Hence

$$e_v b_v = e_v (a_v c_v) = (e_v a_v) c_v$$

= $a_v c_v = b_v$

Assume $A(e) = \xi$. It is easy to get

$$e_{\xi}a_{\lambda} = a_{\lambda}$$
 for all $a_{\lambda} \in A$.

Hence $e_{\xi} \in A$ is a left identify .

Second, for each $a_{\lambda} \in A$, then $e_{\lambda} \in A$, and according to the hypothesis

$$y_{\lambda}a_{\lambda} = e_{\lambda}$$

has a solution $b_{\lambda} \in A$ such that $b_{\lambda}a_{\lambda} = e_{\lambda}$

so a_{λ} has a left inverse $b_{\lambda} \in A$. Therefore, A is a pointwise fuzzy group on X.

Now we come to prove the necessary. Since A is a pointwise fuzzy group on X, hence for any a_{λ} , $b_{\mu} \in A$, here exist $c_{\xi} \in A$ such that $c_{\xi} a_{\lambda} = e_{\lambda}$, $e_{A(e)}$ is the identify of A. Let $b_{\mu} c_{\xi} = d_{\xi}$. Then $\zeta = \min\{\mu, \xi\} \leqslant \mu$, $\lambda = \min\{\xi, \lambda\} \leqslant \xi$. If $v = \min\{\lambda, \mu\}$, then

$$d_{v}a_{v} = (b_{v}c_{v})a_{v} = b_{v}(c_{v}a_{v}) = b_{v}e_{v} = b_{v}.$$

Therefore, $y \cdot a \cdot = b \cdot$ has a solution $d \cdot \in A$. Similarly can prove $a \cdot x \cdot = b \cdot$ has a solution in A.

References

[1] A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35(1971) 512-517.

[2]Qi Zhen-Kai, Pointwise Fuzzy Groups, Fuzzy Math. 2(1981)29-36.

[3]Lu Tu and Gu Wen-Xiang, A note on fuzzy group theorems, FSS, 61(1994)245-247.