The necessary and sufficient condition that a fuzzy set is a pointwise fuzzy group ### Wen-Xiang Gu^a Su-yun Li^b - a Department of Computer Science, Northeast Normal University, ChangChun, JiLin, 130024, China - b Department Of Mathematics, Jilin Province college of Education, 130022, Changchun, China Abstract: 1971 Rosenfeld gave the concept of fuzzy group in [1] and 1981 Qi Zhen-Kai Gave the definition of pointwise fuzzy group in [2]. In this paper we gave a necessary and sufficient condition that a fuzzy set is a pointwise fuzzy group. Keywords: fuzzy set; fuzzy group; pointwise fuzzy group. #### 1. Preliminaries Let X be a nonempty set. A fuzzy set A is a map A: $X \rightarrow [0,1]$, and F(X) will denote the fuzzy power set of X.. We first recall some basic definitions and results that will be needed in the sequel. **Definition 1.1** [1] Let G be a group and $A \in F(G)$. If - (i) $A(xy) \ge \min(A(x), A(y)), x, y \in G$; - (ii) $A(x^{-1}) \geqslant A(x), x \in G$, then A is called a fuzzy group on G. **Definition 1.2** Let X be a nonempty set, $x \in X$, $\lambda \in [0, 1]$, $x_{\lambda} \in F(X)$ and $y \in X$, define $$x_{\lambda}(y) = \begin{cases} \lambda, y = x \\ 0, y \neq x \end{cases}$$ x_{λ} is called a fuzzy point on X. Clearly, if $\lambda \neq 0$, $x_{\lambda} = y_{\mu}$ iff x = y, $\lambda = \mu$; $x_{\lambda} \subseteq y_{\mu}$ iff x = y, $\lambda \leq \mu$. we define $a_{\lambda} \in A \Leftrightarrow a_{\lambda} \subseteq A$ **Proposition 1.3** $a_{\lambda} \in A \Leftrightarrow A(a) \ge \lambda$ Proof. If $a_{\lambda} \in A$, then $\lambda = a_{\lambda}(a) \leq A(a)$. If $A(a) \geq \lambda$, then $a_{\lambda} \subseteq A$ hence $a_{\lambda} \in A$. Definition1. 4 Let X be a nonempty set and $A \in F(X)$. If there exists a rule, for any a_{λ} , $b_{\mu} \in A$, there is only one $c_{\nu} \in A$ corresponding to them, $v = \min\{\lambda, \mu\}$, and for any a_s , $b_t \in A$, the element corresponding to them must be $c_r \in A$, $r = \min\{s,t\}$. We call this rule the multiplication of A, c_{ν} the product of a_{λ} and b_{μ} , which is written as $c_{\nu} = a_{\lambda} b_{\mu}$. We also call A forms a pointwise fuzzy groupoid with regard to this multiplication . Definition 1.5 Let A be a pointwise fuzzy groupoid on X. Then A is called a pointwise fuzzy semigroup if, for any a_{λ} , b μ , $c_{\nu} \in A$, $$(a_{\lambda}b_{\mu})c_{\nu}=a_{\lambda}(b_{\mu}c_{\nu}).$$ Definition1.6 Let A be a pointwise fuzzy groupoid on X. If there exists $e_{\lambda} \in A$ satisfying $e_{\lambda}a_{\mu}=a_{\mu}$ for any $a_{\mu}\in A$. Then e_{λ} is called a left identify of A. Similarly we can define the right identify of A. If e_{λ} is both a left and a right identify of A, then e_{λ} is called the identify of A. Proposition 1.7 If the pointwise fuzzy groupoid A on X has a left identify e_{λ} and a right identify f_{μ} , then $e_{\lambda}=f_{\mu}$. Proof. Since e_{λ} is a left identify, hence $e_{\lambda}f_{\mu}=f_{\mu}.$ Since f_{μ} is a right identify, hence $e_{\lambda}f_{\mu}=e_{\lambda}$. Therefore, $e_{\lambda} = f_{\mu}$. Corollary. The identify of pointwise fuzzy groupoint A on X is unique if it exist. Proposition 1.8 If e_{λ} is the left identify of pointwise fuzzy groupoid A on X, then $A(x) \leq \lambda$ holds for all $x \in X$. Proof. For all $x \in X$, since e_{λ} is a left identify, hence $e_{\lambda} X_{A(x)} = X_{A(x)}$. Therefore , $A(x)=\min\{A(x), \lambda\}$ by Definition1.3 and $\min\{A(x), \lambda\} \le \lambda$. So that $A(x) \le \lambda$. Proposition 1.9 If e_{λ} is a left identify of pointwise fuzzy groupoid A on X, then $\lambda = A(e)$. Proof. Since $e_{\lambda} \in A$, hence $A(e) \ge \lambda$ by Proposition1.3. Since e_{λ} is a left identify and $e \in X$ hence $A(e) \le \lambda$ by Proposition 1.8. Therefore, $A(e) = \lambda$. Definition 1.10 Let A be a pointwise fuzzy groupoid on X and suppose A has the left identify e_{λ} . If for $a_{\mu} \in A$, there exists $b_{s} \in A$ satisfying $b_{s}a_{\mu}=e_{\mu}$, then b_{s} is called a left inverse of a_{μ} . Similarly we can define the right inverse of a_{μ} . Definition 1.11 Let A be a pointwise fuzzy semigroup on X. If - (1) there exists a left identify $e_{\lambda} \in A$, and if - (2) for any $a_{\nu} \in A$, there is at least a left inverse in A. Then A is called a pointwise fuzzy group on X. **Example 1.12** Let X be a group and suppose A is a fuzzy group on X (see Definition1.1), then A is a poindwise fuzzy group on X. Proof. For any x_{λ} , $y_{\mu} \in A$, let $$x_{\lambda}y_{\mu} = (xy)_{\nu}, \quad v = min\{\lambda, \mu\}$$ (1-1) Then A forms a pointwise fuzzy groupoid with respect to the rule (1-1). Since X is a group, hence we have, for any x, y_{μ} , $z_{\nu} \in A$ $$(\chi_{\lambda} y_{\mu})_{Z_{v}} = (\chi y)_{\min\{\lambda, \mu\}} Z_{v} = ((\chi y)_{\min\{\min\{\lambda, \mu\}, v\}} = (\chi(y_{Z}))_{\min\{\mu, \mu\}} = \chi_{\lambda} (y_{Z})_{\min\{\mu, v\}} = \chi_{\lambda} (y_{\mu} Z_{v})$$ so A is a pointwise fuzzy simegroup on X. Since A is a fuzzy group on X, hence when e is the unit of X, for all $x \in X$ $$A(e) = A(xx^{-1}) \ge \min\{A(x), A(x^{-1})\} = A(x).$$ Therefore, we also have, for all $x_{\mu} \in A$ $$e_{A(e)}X_{\mu} = (e_X)_{\min\{A(e), \mu\}} = X_{\mu},$$ so $e_{A(e)}$ is the left identify of A . If $x_{\mu} \in A$, in case of $A(x^{-1}) \geqslant A(x) \geqslant \mu$, then $(x^{-1})_{\mu} \in A$, and $(x^{-1})_{\mu} x_{\mu} = (x^{-1}x)_{\min(\mu, \mu)} = e_{\mu},$ Hence x_{μ} has a left inverse $(x^{-1})_{\mu} \in A$ and A is a pointwise fuzzy group on X. ## 2. The necessary and sufficient condition that a fuzzy set is a pointwise fuzzy group **Theorem 2.1** Let X be a nonempty set and $A \in F(X)$. Then A is a pointwise fuzzy group iff A is a pointwise fuzzy groupoid and in agreement with the following conditions: - (1) $(a_{\lambda}b_{\mu})c_{\nu} = a_{\lambda}(b_{\mu}c_{\nu})$ for any a_{λ} , b_{μ} , $c_{\nu} \in A$. - (2) There exists a left identify $e_{\lambda} \in A$ such that $e_{\lambda} x_{\mu} = x_{\mu}$ for any $x_{\mu} \in A$. - (3) For any $x_{\mu} \in A$, there exists at least a left inverse $y_{\nu} \in A$ such that $$y_{\nu}x_{\mu} = e_{\mu}$$. Proof. If A is a pointwise fuzzy group, then A is a pointwise fuzzy semigroup by Definition1. 11 and so A is a pointwise fuzzy groupoid and satisfying conditions (1), (2) and (3). If A is a pointwise fuzzy groupoid and in agreement with conditions (1), (2) and (3), then A is a pointwise fuzzy semigroup by Definition1. 5 and A is a pointwise fuzzy group by Definition1. 11. According to Theorem2.1 we can give a new definition of pointwise fuzzy group equivalent to Definition1.11. Definition2.2 Let X be a nonempty set and $A \in F(X)$. If there exists a rule, for any a_{λ} , $b_{\mu} \in A$, there is only one $c_v \in A$ corresponding to them, $v = \min\{\lambda, \mu\}$, and for any a_s , $b_t \in A$, the element corresponding to them must be $c_r \in A$, $r = \min\{s, t\}$. We call this rule the multiplication of A, c_v the product of a_λ and b_μ , which is written as $c_v = a_\lambda b_\mu$. And the multiplication and in agreement with the following conditions: - (1) $(a_{\lambda}b_{\mu})c_{\nu} = a_{\lambda}(b_{\mu}c_{\nu})$ for any a_{λ} , b_{μ} , $c_{\nu} \in A$. - (2) There exists a left identify $e_{\lambda} \in A$ such that $e_{\lambda} x_{\mu} = x_{\mu}$ for any $x_{\mu} \in A$. - (3) For any $x_{\mu} \in A$, there exists at least a left inverse y $_{\nu} \in A$ such that $$y_{\nu}x_{\mu} = e_{\mu}$$. Then A is called a pointwise fuzzy group on X. If X is a group and A is a fuzzy group on X. Let, for any a_{λ} , $b_{\mu} \in A$ $$a_{\lambda}b_{\mu} = (ab)_{\min\{\lambda, \mu\}}$$ Then A is a pointwise fuzzy group on X by Example 1.12. Theorem2. 3 Let X be a nonempty set and A a pointwise fuzzy semigroup on X. Then A is a pointwise fuzzy group on X iff for any a_{λ} , $b_{\mu} \in A$, $v = \min\{\lambda, \mu\}$, $$a_v x_v = b_v$$ and $y_v a_v = b_v$ has a solution in A. Proof. First we prove the sufficient. For any $a_{\lambda} \in A$, since $y_{\lambda} a_{\lambda} = a_{\lambda}$ has a solution in A, hence there is a $e_{\lambda}\!\in\!A$ satisfying $e_{\lambda}a_{\lambda}\,=\,a_{\lambda}$ For another any $b_{\mu} \in A$, let $v = \min\{\lambda, \mu\}$. Since $a_{\nu}x_{\nu} = b_{\nu}$ has a solution in A , so there exists a $c_v \in A$ satisfying $a_v c_v = b_v$. Hence $$e_v b_v = e_v (a_v c_v) = (e_v a_v) c_v$$ = $a_v c_v = b_v$ Assume $A(e) = \xi$. It is easy to get $$e_{\xi}a_{\lambda} = a_{\lambda}$$ for all $a_{\lambda} \in A$. Hence $e_{\xi} \in A$ is a left identify . Second, for each $a_{\lambda} \in A$, then $e_{\lambda} \in A$, and according to the hypothesis $$y_{\lambda}a_{\lambda} = e_{\lambda}$$ has a solution $b_{\lambda} \in A$ such that $b_{\lambda}a_{\lambda} = e_{\lambda}$ so a_{λ} has a left inverse $b_{\lambda} \in A$. Therefore, A is a pointwise fuzzy group on X. Now we come to prove the necessary. Since A is a pointwise fuzzy group on X, hence for any a_{λ} , $b_{\mu} \in A$, here exist $c_{\xi} \in A$ such that $c_{\xi} a_{\lambda} = e_{\lambda}$, $e_{A(e)}$ is the identify of A. Let $b_{\mu} c_{\xi} = d_{\xi}$. Then $\zeta = \min\{\mu, \xi\} \leqslant \mu$, $\lambda = \min\{\xi, \lambda\} \leqslant \xi$. If $v = \min\{\lambda, \mu\}$, then $$d_{v}a_{v} = (b_{v}c_{v})a_{v} = b_{v}(c_{v}a_{v}) = b_{v}e_{v} = b_{v}.$$ Therefore, $y \cdot a \cdot = b \cdot$ has a solution $d \cdot \in A$. Similarly can prove $a \cdot x \cdot = b \cdot$ has a solution in A. #### References [1] A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35(1971) 512-517. [2]Qi Zhen-Kai, Pointwise Fuzzy Groups, Fuzzy Math. 2(1981)29-36. [3]Lu Tu and Gu Wen-Xiang, A note on fuzzy group theorems, FSS, 61(1994)245-247.