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Abstract

Fuzzy clustering helps to find natural vague boundaries in data. The fuzzy c-means
method is one of the most popular clustering methods based on minimization of a criterion
function. However, one of the greatest disadvantage of this method is sensitivity for noises
and outliers in the data. This paper introduces a new e-insensitive Fuzzy C-Means (¢FCM)
clustering algorithm. As a special case, this algorithm include the well-known Fuzzy C-
Medians method (FCMED). A new clustering algorithm is experimentally compared with
the Fuzzy C-Means (FCM) using a synthetic data with outliers.

I. INTRODUCTION

Clustering plays an important role in many engiheering fields such as pattern recognition,
system modeling, image analysis, communication, data mining, and so on. The clustering
methods divide a set of N observations (input vectors) x;,Xs, ..., Xy into ¢ groups denoted
M, 8, ..., 82 so that members of the same group are more similar to one another than to
members of other groups. The number of clusters may be pre-defined or it may be set by
the method.

Generally, clustering methods can be divided into [6]: hierarchical, graph theoretic, de-
composing of density function, minimizing of criterion function. In this paper clustering by
minimization of criterion function will be considered.

Usually, the clustering methods assume that each data vector belongs to one and only
one class. This method can be natural for clustering compact and well-separated groups of
data. However, in practice clusters overlap, and some data vectors belong partially to several
clusters. The fuzzy set theory [15] is a natural way to describe this situation. In this case,

the membership degree of a vector x; to the i-th cluster (u;) is a value from [0, 1] interval.



This idea was first introduced by Ruspini [12] and used by Dunn [5] to construct a fuzzy
clustering method based on the criterion function minimization. In [1] Bezdek generalized
this approach to an infinite family of fuzzy c-means algorithm using a weighted exponent on
the fuzzy memberships.

Fuzzy c-means clustering algorithm is successfully applied to a wide variety of problems
[1]. However, one of the greatest disadvantage of this method is sensitivity for noises and
outliers in the data. Computed cluster centers can be placed away from the true values. In
literature there are a number of approaches to reduce the effect of outliers, including the
possibilistic clustering [11], the fuzzy noise clustering (2], L, norm clustering (0 < p < 1) [7]
and L, norm clustering {10]. In this paper the last approach is of special interest.

In real applications, the data have noises and outliers, and assumed (for simplicity) models
are only approximators to reality. For example, if we assume that distribution of data in
clusters are Gaussian, then using weighted (by membership degree) mean should not cause
a bias. In this case L, norm is used as dissimilarity measure.

Noises and outliers existing in the data follows that clustering methods need to be robust.
According to Huber [9], a robust method can have following properties: i) it should have
a reasonably good accuracy at the assumed model, ii) small deviations from the model
assumptions should impair the performance only by a small amount, iii) larger deviations
from the model assumptions should not cause a catastrophe. In literature there are many
robust estimators [3], [9]. In this paper Vapnik’s e-insensitive estimator is of special interest
[14].

The goal of this paper is to establish a connection between fuzzy c-means clustering and
robust statistics using Vapnik’s e-insensitive estimator. This paper presents a new fuzzy
clustering method based on robust estimator. The fuzzy c-medians can be obtained as a
special case of introduced clustering method.

This paper is organized as follows: Section II presents a short description of clustering
methods based on criterion function minimization. A novel clustering algorithm is described
in Section III. Section IV presents simulation results of a synthetic data with outliers clus-

tering and a comparative study with the fuzzy c-means method. Finally, conclusions are

drawn in Section V.



II. CLUSTERING BY MINIMIZATION OF CRITERION
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for m = 2 was introduced by Dunn [5]. An infinite family of fuzzy c-means criterions for

m € [1,00) were introduced by Bezdek. Using Lagrange multipliers the following theorem

can be proved, via obtaining necessary conditions for minimization of (2) [1):

Theorem 1: If m and c are fixed parameters, and I, I, are sets defined as:

Li={ill<i<c dg=0},
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The optimal partition is a fixed point of (5) and (6), and the solution is obtained from the
Picard algorithm. This algorithm is called fuzzy ISODATA or Fuzzy C-Means (FCM), and

can be described as:



1° Fix ¢ (L < ¢ < N), m € (1,00). Initialize V@ € R, j =1,
2° Calculate fuzzy the partition miatrix UY for j-th iteration usmg (5),
3° Update the centers for j-th iteriation VO = [vOvI) .. v0)] usﬂ:ng (6) and UV,
£ If [UG+) — U > ¢ then j - j +1 and go to 2°. '

||-|| » denotes Frobenius norm and ¢ pre-set parameters. In this algorithm, the parameter
m influences the fuzziness of the :lr\Lters; a larger m results in fuzziér clusters. Form — 1%,
the fuzzy c-means solution becomes a hard one, and for m — oo the solution is as fuzzy

as possible: u; = 1/c, for all i, k. Usually m = 2 is chosen, because there is no theoretical

basis for the optimal selection of m.

III. A NEW CLUSTERING ALGORITHM

In clustering algorithm described in previous section, we used a quadratic loss function as
a dissimilarity measure between the data and the cluster centers. The reason of using this
measure is mathematical, that is, for simplicity and low computational burden. However
this approach is sensitive to the noises and outliers. In literature there are many robust loss
functions [9], but due to its simplicity Vapnik’s e-insensitive loss function [14] is specially

“interesting. If we denote an error as ¢, then e-insensitive loss function has the form:

0, lt| <e,
t]. = (7)
It| - &, It| > &,
where ¢ denotes insensitivity parameter. The well-known absolute error loss function is a
special case of (7) for £ = 0.

Using the e-insensitive loss function the fuzzy c-means criterion function (2) takes the

form:
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If Ve R, is fixed, then columns of U are independent, and the minimization of (8) can

be performed term by term:
N
k=1
|

|



where
(]

gk (U) = Z (’U.ik)m ka — Vi e (]_1)

\4
1<k<N =

The Lagrangian of (11) with constraints from (1) is:
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where A is the Lagrange multiplien. Setting the Lagrangian’s gradient to zero we obtain:
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From (14) we get:
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of the criterion value in (8), because partition matrix elements are zeros for non-zero dis-

tances, and non-zero for zero distances. Finally, the necessary conditions for minimization

of (8) with respect to U can be written in the following form:
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A key problem in the new clustéring method is to obtain necessga.ry conditions for proto-

types matrix V. Combination (8) and (9) yields:
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Our problem of minimization of |(8) with respect to the prototypes can be decomposed to
c - p minimization problems of (20) for i = 1,...,¢; [ = 1,...,p. In general case, not for all

data zy; following inequalities are jsatisfied: |zx — vy| < €, |vy — 2| < €. If we introduced

slack variables 5:: & > 0, then for all data z; we can write:
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Vi — T S €+ &g (21)
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Now, criterion (20) can be written in the form:
gil Uzl Z (U'Lk (f: + gl:) ’ (22)

subject to the constraints (21) and & > 0, £, > 0. The Lagrangian function of (22) with

the above constraints is:
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Ga(va) = > (u) (E}: + §E) =YX (6 + &8 — vy + mkl) (23)
k=1 k=1

N
—ICZ)\E (e + & +vi—au) - > (w6 +uéi),
=1

k=1

where A\, Ay, 4, uy > 0 are the Lagrange multipliers. The requirements is to minimize
this Lagrangian with respect to vy, £f,£;. It must be also maximized with respect to the
Lagrange multipliers. The following conditions for optimality (the saddle point of the La-
grangian) we get by differentiating (23) with respect to vy, &f,€; and setting the results

equal to zero:

8Culva) z:( - ) =0,

Bvy
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Sk
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From the last two conditions (24) and the requirements pjf, u; > 0 we obtain that A{, Ay €
[0, (ux)™]. Putting conditions (24)§ in the Lagrangian (23) we get:

N N
G,‘l (’U,'l) = — ;1 ()\;: — )\,:) Tt — € Z ()\;: + },:) . (25)

k=1
Maximization of (25) subject to C(instraints:
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(26)
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is the so called Wolfe dual formula{tion (problem). It is well-known ffrom optimization theory

that at the saddle point, for each #_Aagrange multiplier, the KarusﬁrKﬁhn-Thcker conditions
must be satisfied: ’
(

Aj: (6 + & —va+ $kz) =0,
)\; (6 +€; + vy — ZEH) =0,
(Cuie)™ — M) & =0,

| (@)™ = X5) & =0.
From last two conditions (27) we see that A} € (0,(ux)™) = & = 0 and ), €

(0, (uir)™) = & = 0. In this case from the first two conditions (27) we have:

(27)

(28)

va=1zm+e, for X\ e (0, (ux)™) ,
Vi = Tt — €&, for )\; € (0, (uik)m) .

Thus, we may determine cluster center v; for (28) by taking any z;; for which we have the
Lagrange multipliers in open interval (0, (ui)™). However, from numerical point of view, it
is better to take mean value of v; obtained for all data for which the conditions (28) are
satisfied.

Using described in this section method for cluster centers calculation we obtain the algo-
rithm that can be called as e-insensitive Fuzzy C-Means (€FCM):
1° Fix c (1 <c < N), m € (1,00) and € > 0. Initialize V® € R, j = 1,
2° Calculate the fuzzy partition matrix U® for‘ Jj-th iteration using (18),
3° Update the centers for j-th iteration V@) = [v{)v{...v()] using (25), (28) and U,
4° If ”U(j“) — U(j)”F > £ then j «— j + 1 and go to 2°.

1
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Fig. 1. Results for clustering of a synthetic data with outliers using the eFCM method.

IV. NUMERICAL EXAMPLE

For all calculations in this section the k-th component of the j-th initial prototype were
obtained as:
Mk — Mg

1S¥SC Uik = T+ c+1

; (29)
where ¢ is a number of clusters, m; =miin ik, My =MaxX Tk The computations has been
stopped if in a sequential iterations the change of the minimized criterion is less than 1072
In this subsection comparison the FCM and the eFCM by calculation centroids obtained
by applying these methods to synthetic two-dimensional data is presented. These data
presented in Fig.1 contains three well-separated groups of data and outliers located in the
upper-right corner. The true cluster centers calculated after excluding the outliers are:
vi = [2.2379 3.4262]", v, = [1.8439 7.7709]7, v5 = [0.3627 3.0919]". These centers are
marked in Fig.1 by triangles. The FCM clustering are i)erformed for the parameters m equal

to 1.5, 2.0 and 5.0. The eFCM method is performed for the parameter m equal to 1.5, 2.0,



TABLE I
. 1'
MAXIMAL ERRORS OF CLUSTER’S CENTERS CALCULATIONS.

eFCM

m
€ 1.5 2.0 2.5
01047  0.1047  0.1143
0 02718 02731  0.2971
02186  0.1465  0.8475
0.0507  0.1110  0.1047
1 01294 0.1294  0.0000
0.0314  0.0126  0.3403
0.1047  0.1047  0.1047
2 01334 01792  0.1334
0.1465  0.0126  0.0126
0.1047  0.1047  0.1047
3 01334 01387  0.1294
0.1928  0.1465  0.2801
FCM

0.0415 0.0743 0.1793
- 0.1127 0.0843 0.2170
0.4576 0.2372 0.0606

2.5 and the parameter € equal to 0, 1, 2, 3.

In Table I for each combination of these parameters the maximal (by variables) absolute
deviation of cluster centers from the true centers are presented. It is shown from this Table
that the eFCM method terminate very nearly from the true values. The method is not very
sensitive to the choice of m and e parameters, but the best results, in the sense of a sum of
absolute deviations, is obtained for m = 2 and € = 1. The centers obtained by the eFCM

method for m = 2 and £ = 1 are presented in Fig.1. From Table I it is also shown that



cluster centers obtained by the FOM algorithm are far away from the true centers.

V. CONCLUSIONS

Noises and outliers in clustered data follows that these methodsﬁ need to be robust. This
paper establish the connection bdtween fuzzy c-means method ajnd robust statistics. In-

troduced the e-insensitive fuzzy chustering method is based on Vapnik’s e-insensitive loss

function. The new method is introduced as a constrained minimization problem of crite-
rion function. The necessary conditions to obtain local minimum of the criterion function
are shown. The existing fuzzy c—rixedians method can be obtained as a special case of the
method proposed in this paper. Ailso comparative study of the e-insensitive fuzzy c-means
with traditional fuzzy c-means is i!ncluded. This numerical examples showing usefulness of

the method proposed in the paperi in clustering data with outliers;
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