(μ,ν) -Implication of IOFL

Zou Li

College of Computer and Information Technology, Liaoning Normal University, Dalian, 116029, P.R.China

Liu Xin

Department of Mathematics, Liaoning Normal University, Dalian, 116029, P.R.China

Abstract

In paper [1],the method of (μ, ν) -resolution in intuitionistic operator fuzzy logic (IOFL) is discussed. But it isn't perfectibility. In this paper two different concepts of the implication of IOFL is presented, namely, (μ, ν) -weak implication and (μ, ν) -strong implication. Then the property of these two different implication and the perfectibility of (μ, ν) -resolution is discussed.

Keywords Intuitionistic Operator Fuzzy Logic, (μ, ν) -resolution, (μ, ν) -weak implication

1. Introduction

An intuitionistic fuzzy proposition can be described by two real number on the closed interval [0,1], which represent its truth degree and its false degree .In paper [1] the intuitionistic fuzzy degree can be expressed by operator which lies on the left of the proposition atom . Thus intuitionistic operator fuzzy logic (IOFL) is discussed on the operator lattice $L=\{(\mu,\nu)|\mu,\nu\in[0,1],\ \mu+\nu\leqslant 1\}$. Furthermore, the (μ,ν) -resolution method is presented. For a whole (μ,ν) -resolution principle ,two concepts of the implication in IOFL is defined as follows .

Definition 1.1 Let G is a formula of IOFL, $\mu, \nu \in L$, assume $V_I(G) = (\mu_G, \nu_G)$, the formula G is called (μ, ν) -true if $\mu_G \geqslant \mu$ and $\nu_G \leqslant \nu$ for an arbitrary interpretation I. Whereas, the formula G is called (μ, ν) -false if $\mu_G \leqslant \mu$ and $\nu_G \geqslant \nu$.

2. (μ, ν) -weak implication and (μ, ν) -strong implication

Definition 2.1 Let G an H are formulas of IOFL, $\mu, \nu \in L$, G is called (μ, ν) -weak implicate H (or H is a weak -logical result of G) if $(G \rightarrow H)$ is (μ, ν) -true, denoted by $G \Rightarrow H$.

Theorem 2.1 Assume $V_I(G)=(\mu_G, \nu_G)$ and $V_I(H)=(\mu_H, \nu_H)$, $(G \rightarrow H)$ is (μ, ν) -true iff if $\mu_G > \nu$ and $\nu_G < \mu$ then $\mu_H \ge \mu$ and $\nu_H \le \nu$ for arbitrary interpretation I.

Proof (<=) $\mu_{(G \to H)} = \mu_{(\sim G \lor H)} = \max\{\mu_{\sim G}, \mu_H\} = \max\{\nu_G, \mu_H\} = \mu_H \geqslant \mu \text{ and } \nu_{(G \to H)} = \nu_{(\sim G} \vee_{H)} = \min\{\nu_{\sim G}, \nu_H\} = \nu_H \leqslant \nu, \text{ hence } (G \to H) \text{ is } (\mu, \nu) \text{-true.}$

(=>) For an arbitrary interpretation I, $\mu_{(G-H)} \ge \mu$ and $\nu_{(G-H)} \le \nu$, if $\mu_G > \nu$ and $\nu_G < \mu$, then

 $\mu_{(G \to H)} = \mu_{(\sim G \lor H)} = \max\{\mu_{\sim G}, \mu_H\} = \max\{\nu_G, \mu_H\} \geqslant \mu$

since $\nu_G < \mu$, we have $\mu_H \ge \mu$,

 $v_{(G \rightarrow H)} = v_{(\sim G \lor H)} = \min\{v_{\sim G, v_H}\} = \min\{\mu_{G, v_H}\} \le v$ and $\mu_{G} > v$, therefore $v_H \le v$.

Definition 2.2 Assume S is a set of clause, $S_{PR}^{(\mu,\nu)}$ is called (μ,ν) -primary reduced

set of $S,(\mu,\nu)\in L, S_{PR}^{(\mu,\nu)}$ is obtained by the method as follows: for arbitrary $(\mu^*,\nu^*)P\in S$,

(1) when $\mu \geqslant 0.5$, $\nu \leqslant 0.5$, if $\nu \leqslant \mu^* \leqslant \mu$ or $\nu \leqslant \nu^* \leqslant \mu$, delete $(\mu^*, \nu^*)P$ from S.

(2) when $\mu < 0.5$, $\nu > 0.5$, if $\mu \le \mu^* \le \nu$ or $\mu \le \nu^* \le \nu$, delete $(\mu^*, \nu^*)P$ from S.

Theorem 2.1 Let C_1 and C_2 are two clauses, $\mu \ge 0.5$, $\nu \le 0.5$, $C_{1PR}^{(\mu,\nu)}$ and

 $C_{2PR}^{(\mu,\nu)}$ are (μ,ν) -primary reduced clause of C_1 , C_2 , and then

$$(C_{1PR}^{(\mu,\nu)} \wedge C_{2PR}^{(\mu,\nu)}) = > R_{(\mu,\nu)} (C_{1PR}^{(\mu,\nu)}, C_{2PR}^{(\mu,\nu)})$$

Proof We can obtain it from definition 2.1 ,definition 2.2 and theorem 2.1.(omitted)

Theorem 2.3 Let C_1 and C_2 are two clauses , assume (μ, ν) =(0.5,0.5), and then $C_1 \land C_2 \Rightarrow R_{(\mu,\nu)}(C_1,C_2)$.

Proof When $(\mu, \nu)=(0.5, 0.5)$, there is $C_1 = C_{1PR}^{(\mu,\nu)}$ and $C_2 = C_{2PR}^{(\mu,\nu)}$

From theorem 2.1 we can get $C_1 \wedge C_2 \Rightarrow R_{(\mu,\nu)}(C_1,C_2)$.

Definition 2.3 Assume G and H are two formulas of IOFL, $(\mu, \nu) \in L$, for arbitrary interpretation I, if $\mu_G \geqslant \mu$ and $\nu_G \leqslant \nu$ there must be $\mu_H \geqslant \mu$ and $\nu_H \leqslant \nu$, G is called (μ, ν) -implication H or H is a logical result of G, denoted $G \equiv > H$.

The following propositions are obviously.

Proposition 2.1 When μ >0.5 and ν <0.5, if G=>H then G=>H; When μ =0.5 and ν =0.5, if G=>H then G=>H.

Proposition 2.2 Let G is a formula,

- (1) When $\mu \le 0.5$ and $\nu \ge 0.5$, A = > A;
- $(2)A \Longrightarrow >A$.

Proposition 2.3 Let A, B, C are the formulas of IOFL respectively,

- (1) When $\mu > 0.5$ and $\nu < 0.5$, if A = > B, B = > C then A = > C;
- (2)If $A \equiv > B$ and $B \equiv > C$ then $A \equiv > C$.

Proposition 2.4 Let A, B, C are formulas of IOFL

- (1) If A => B and A => C then $A => (B \land C)$;
- (2) If $A \equiv > B$ and $A \equiv > C$ then $A \equiv > (B \land C)$.

Theorem 2.4 Let C_1 and C_2 are two clauses, $\mu \ge 0.5$ and $\nu \le 0.5$, and then $C_1 \wedge C_2 = R_{(\mu,\nu)}(C_1,C_2)$.

Corollary Let C_1 and C_2 are two clauses, $\mu \ge 0.5$ and $\nu \le 0.5$, for arbitrary interpretation I, if

$$\mu_{(C1 \land C2)} > \mu, \nu_{(C1 \land C2)} < \nu$$

3.the perfectibility of (μ,ν) -resolution princleple

Definition 3.1 For $(\mu, \nu) \in L$, $(\mu^*, \nu^*)P$ is an arbitrary word of a clause which satisfied with

$$v \leq \mu^* \leq \mu \text{ or } v \leq v^* \leq \mu$$

This clause is called (μ, ν) -null clause, denoted by (μ, ν) - \square .

Theorem 3.1 Let $\mu \ge 0.5$ and $v \le 0.5$ if a deduction that (μ, ν) - \square can be deduced from S with (μ, ν) -resolution method exists ,then S is (μ, ν) -false.

Proof If otherwise, there will be an interpretation I, cause $\mu_S > \mu$ and $\nu_S < \nu$ from theorem 2.4 there is $C_1 \wedge C_2 = > R_{(\mu,\nu)}(C_1,C_2)$ from proposition 2.3 and the corollary of theorem 2.4 there is

$$\mu_{(\mu,\nu)} = > \mu, \nu_{(\mu,\nu)} = < \nu,$$

It is a contradiction for definition 3.1.

Theorem 3.2^[2] For $(\mu, \nu) \in L$, if the clause set S is (μ, ν) -false, there must be a (μ, ν) - resolution deduction which can deduce (μ, ν) - from S.

From theoerm 5 and theorem 6 can obtained follow

Theorem 3.2 (Perfectibility Theorem) Assume $\mu \ge 0.5$ and $v \le 0.5$, S is a clause set, then S is (μ, ν) -false iff there is a (μ, ν) -resolution deduction which can deduce (μ, ν) - \square from S.

From above, in order to keep the intuitionistic property of two clauses, $(\mu, \nu)=(0.5,0.5)$ should be taken in (μ, ν) -weak implication; While $\mu \ge 0.5$ and $\nu \le 0.5$ should be taken in (μ, ν) -strong implication, that can make the (μ, ν) -resolution formula of two clause is logical result of their parent clause.

When $\mu+\nu=1$, it can be obtained λ -weak implication and λ -strong implication which defined in paper[3].

References

- [1] K.Atanassov. Intuitionistic Fuzzy Set. Fuzzy sets and System. Vol 20(1986).87-96
- [2] Chen Tuyun ,Zou Li .Intuitionistic Fuzzy Logic on Operator Lattice. BUSEFAL. Vol 69(1997).107-110
- [3] Liu Xuhua, Automatic Reasoning Based on Resolution Method. Science Publishing House ,1994,347-360.