Pseudo-fuzzy Linear Inequation and Equation

Liu Jinlu

Water Resource Section, Depart.of Civil-engineering
Dalian University of Technology, Liaoning, Dalian, 116024, P.R. China

Abstract:

In this paper, an new concept of pseudo-fuzzy linear function is suggested. The elementary properties of this kind functions are discussed. Inequation and equation of pseudo-fuzzy linear function are considered in detail.

Keywords:

PFL-function, PFL-inequation, PFL-equation

1. Pseudo-fuzzy linear function and its properties

In the analysis of fuzzy logic electric circuit which include amplifiers, the function has the following characteristics:

- (a) The independent variables are fuzzy value variables, produced by a constant number, then make logic calculating.
- (b) The value domain is any internal other than [0,1]. This kind of functions first meet in the reference [1]. As the independent variables take value in $\{0,1\}$, then this function just is the so-called pseudo-Boole function [2].

Definition 1. Let $F:[0,1]^n \rightarrow R$ be a mapping with fuzzy variables, it expresses as

$$F(x_i, x_2, \dots, x_n) = \bigvee_{i=1}^n (a_i x_i)$$
 (1)

where x_i is a fuzzy variable, and a_i is a constant positive number, then $F(x_1,x_2,\dots,x_n)$ is called a pseudo-fuzzy linear function with n variables, denoted as PFL-function.

It is obviously that, F has the following elementary properties.

Theorem 1. PFL-function $F(x_1,x_2,\dots,x_n)$ is consistent increasing with fuzzy vector $X=(x_1,x_2,\dots,x_n)$, That is, if $X=(x_1,x_2,\dots,x_n)$, $Y=(y_1,y_2,\dots,y_n)$, and $Y\leq Y$, then

$$F(x_1, x_2, \dots, x_n) \leq F(y_1, y_2, \dots, y_n)$$
 (2)

Theoerm 2. PFL-function $F(x_1, x_2, \dots, x_n)$ is a boundary function, and satisfies

$$0 \leq F(x_1, x_2, \dots, x_n) \leq M = \bigvee_{i=1}^n a_i$$
(3)

Theorem 3. PFL-function $F(x_1, x_2, \dots, x_n)$ is a continuous function.

The proofs of the above three theorems are obviously, hence omit.

2. Pseudo-fuzzy linear inequation

Definition 2. Let $F(x_1,x_2,\dots,x_n)$ be a PFL-function, λ is a real number, the following inequation

$$F(x_1, x_2, \dots, x_n) \leq \lambda \tag{4}$$

is called a pseudo-fuzzy linear inequation, denoted as PFL-inequation. If $X=(x_1,x_2,\cdots,x_n)$ satisfies (4), then X is called a solution of PFL-inequation (4).

We can easily imply the below judgment theorem by using the properties of PFL-function.

Theorem 4. The solutions of PFL-inequation(4) satisfy

- (i) If $\lambda \ge M$, then $X=[0,1]^n$. it is called full-solution;
- (ii) If $0 \le \lambda \le M$, then PFL-inequation(4) has solutions;
- (iii) If $\lambda < 0$, then $X = \Phi$ it is called no-solution.

where $M = \bigvee_{i=1}^{n} a_i$

From the definition of generalized logic calculation we have the following equal solution theorem.

Theorem 5. PFL-inequation(4) has the same solution as the following inequation system:

$$a_i x_i \leq \lambda$$
 $i=1,2,\cdots,n$ (5)

Theorem 5 gives the solution structure of PFL-inequation(4).

From (5) we know the solutions

$$x_{i} = \begin{cases} [0, \lambda / a_{i}], & a_{i} > \lambda \\ [0,1], & a_{i} \leq \lambda \end{cases}$$
 (6)

Example 1. Solving PFL-inequation

$$5x_1 \vee 8x_2 \vee 6x_3 \leq 7$$

Solution. From theorem 5 we directly have

$$X=[0,1]\times[0,\frac{7}{8}]\times[0,1]$$

3. Pseudo-fuzzy linear equation

Definition 3. Let $F(x_1,x_2,\cdots,x_n)$ be a PFL-function, λ is a real number, then we call the following equation

$$F(x_1, x_2, \dots, x_n) = \lambda \tag{7}$$

a pseudo-fuzzy linear equation, denoted as PFL-equation, If $X \in [0,1]^n$ satisfies the equation (7), then X is called a solution of PFL-equation(7).

From the properties of generalized fuzzy logic calculation we have the following equal solution theorem.

Theorem 6. PFL-equation (7) has the same solutions as the following simple system $a_i x_i \le \lambda$, $i = 1, 2, \dots, n$

$$\begin{cases} a_i x_i \le \lambda, & i = 1, 2, \dots, n \\ a_i x_i = \lambda, & \text{for some } j \end{cases}$$
 (8)

Theorem 6 implies the structure of solutions of PFL-equation (7), that is the following solution structure theorem.

Theorem 7. The solutions of PFL-equation (7) satisfy the following conclusions:

- (i) If $\lambda < 0$ or $\lambda > M$, then $X = \Phi$;
- (ii) If $0\!\leqslant \lambda \leqslant\!\! M,$ and there are a_{jk} satisfy $a_{jk}\!\!> \!\lambda$, then jk-th branch solution is

$$X_{jk} = [0,1]^{jk-1} \times [0, \frac{1}{2}] \times [0,1]^{n-jk} \qquad j,k=1,2,\cdots,m$$
(9)

then the solution of PFL-equation(7) is

$$X = \bigcup_{j,k=1}^{m} X_{jk} \tag{10}$$

where $M = \bigvee_{i=1}^{n} a_i$, where X_{jk} is called jk-th branch solution of PFL-equation(7).

Example 2. Soving the following PFL-equation

$$5x_1 \vee 8x_2 \vee 9x_3 \vee 3x_4 = 6 \tag{11}$$

Solution. From theorem 7 we know that, there are two branch solutions of PFL-equation(10), using the formal(8) we calculate the branch-solutions.

$$X_1 = [0,1] \times \frac{3}{4} \times [0,1]^2$$
 $X_2 = [0,1]^2 \times \frac{2}{3} \times [0,1]$

Therefore the solution of PFL-equation(10) is

$$X = X_1 \cup X_2 = [0,1] \times \frac{3}{4} \times [0,1]^2 \cup [0,1]^2 \times \frac{2}{3} \times [0,1]$$

References

- [1] Liu Feng-qi, Fuzzy mathematics and its applications, Science press, Beijing, 1988, 120-149.
- [2] Liu Ying-cai, Theory of Boolean methods, Scientific and technological literature . press, Shanghai, 1993, 130-159.
- [3] Wang Peizhuang, Theory of fuzzy set and its application, Scienceand technology press, Shanghai, 1983, 109-123.