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Abstract : In this paper ,some results of Lukasiewicz generalized operators are obtained.

We provide a list of properties for A and 1 functions.
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In the fuzzy logic literature, that extends classical Boolean implication,the classical

ones are considered p—q for proposition p and q, are defined (Table 1)

Table 1
—- 0 1
0 1 1
1 0 1

Thus, the maps considered are I : [0,1]% [0,1] —[0,1], in such a way that the true valued of (p—q) are given
By I( v (p) , v (q)). Dbois and Prade proposed an interesting classification operators used in the bibliography.
From an axiomatics point of view, Dubois and Prade provide a list of properties which these
operators must satisfy [1-3]. Concerning the implication operators, Lukasiewicz is the unique operator that
verifies the whole of Duboi and Prade’s properties.[2-3]
In[4],P.Burillo et al. introduced Lukasiewicz generalized is the unique operators as maps given by
L(a,by= min(l1, A (a)+ & (b)), (a,b) €[0,1] *[0,1], with A and u functions from [0,1] to [0,1] . In this
paper ,some properties on Lukasiewicz generalized operators are obtained.
Definition 1 : Lukasiewicz generalized operators are the maps L: [0,1] X[0,1] —[0,1].
such that L(a,b)=min(1, A (@)+ u (b)), Y a,b €[0,1], where functions A ,n :[0,1] —[0,1]



verifing A (0)+ 1 (1)=1 and A (1)+ u (0)=0.
The limit conditions required for the functions A and 1 are sufficient to assure the
operator L is a generalization of classical implication.

Theorem 1. Under the conditions stated in Definition 1,the following properties

are verified:
(1) LO,b)=1 vbE[0,1]
() L@a0F A Va€l[0,1]
(3) L(a,)=1 Va€[0,1]

4 L(b= u®)  Vbe[O1]
() Labrl o Aa@tubd) 21 Vv abE0]]

(6) L@b~0 « M(a)=land u(b)=0
Remark 1: The valued L(a,b) depends on values a and b.
Theorem 2. Let L be defined with the conditions of Definition 1. Then L verifies
L@ab=L{1-p ,1-a%), V ab€[0,1],iff A= u (1)
Proof. ( =)If Lab=L(\i_p,1-a%), v abeE[0,1],
then we have that L(a,0)=L(1 , 1-a%), v a€[0,1] (b=0)
and by Theorem 1, that L(a,0)= A (a), and L(1,1-a%)=u (1-a%) Vv a€[o0,1]
therefore A (a) =u (1-ad).
(=) Conversely,if A@) = (1"), v@F M4l-p), v PpEI,
then L(a,by=min(1, 2 (a)+u (b))
=min(1, 1 (1-e')+ A (V1-b))
=min(1, A (VI-by+u (1-aY)=L(VI-b , 1-8%).

Remark 2:
® L0,0=L{1,1)=LO,1)=1 (Theorem 1 (1))
@ MAO)= u()=1, A(1)= u(0)=0.
Theorem 3. L(a,b)=1 <« a <b, then, “< ™ is a partial order.

Proof. Since min(l,  (a)+u (b))=I & A@tu) > 1,

o -2+ Bd)> 1,



SO a <b o p@-a+ np)21,,
if a<b o n(-ad+ ud)> 1,
if b<c o u(-b)+ u() > 1,
since b<b  w(-b)+ n(b) 2150 B(1-a®+ p(e)+u(l-b)+ n(d) > 2,
hence u (1-a®)+ ne) =21, S0 ac<c.
Theorem4. A,u:[0,1] —=[0,1], if A(a)=l-a?, then A (1-ad)=a’.
Proof. If MA(a=l-2%, Va€E[0,1],
= A(1-a)=1-(1-a%)?=2ala*=a’(2-a) ,and forany a€[0,1],
2-a® >1, then we have: A(1-2%) >at
Theorem 5. Let M,u:[0,1] —=[0,1], if A(a)=l-a’and a <b, then u(b) > a’.
Proof. In fact,if a<b,  Vab€[0,1], by Theorem3,
that a <b iff A(a}ru(b) =1, and by condition, A (a)=1-a2,
therefore l-a®+ u() > 1, result u (®) > a%.
Let A:[0,1] —[0,1] satisfies following Table 2:

Table 2
1. 201 and A(D)=0

A nonincreasing and B nondecreasing
A @)y= v (l-p) PE€[0,1]
P<q & Mp)tri(lg>1

A continuous

wv A W N

We will give now a theorem of characterization of the function A that satisfies conditions of

Table 2 .

Theorem 6.  Let L satisfy the conditions of Definition 1and A verifies Table 2,
then the following property holds for any a,b,c €[0,1] :
if A(a)j=l-a, then L(aL(b,c))=L(b,L(a.c)).
Proof. Infact,if A(a)=l-a, VYa€[0,1],
then L(a,L(b,c))=min (1, A (a)+ A (1-min(1,» (b)+ A (1-c)))



= min (1, 1-a+1-(1-min(1,1-b+c)))
=min (1, 1-a+min(1,1-b+c)))
L(b,L(a,c))= min (1, 1-b+min(1,1-a+c)))
There age three possible different cases :
® ab <c = L(aL(bc)=l=L(b,L(ac)
® ab > = L(aL(b,c))= min (1, 1-a+1-b+c)=L(b,L(a,c))

® a<cxgb,then, L(a,L(b,c))=1=L(b,L(ac)).
Therefore , when A (a)=1-a,then L(a,L(b,c))=L(b,L(a,c)), A (x)isa strong negation, A (x)=1-x.
Now ,ifeach A:[0,1] —[0,1], and for each summand ([a,b],L) , we define a strong negation

A P as follows:

AL x)= Ax(b-a)+a)-a
b-a

Straightforward calculation shows that A ,° is indeed a strong negation .

In fact ,
)»."(O)=;L(a)_a= b-a -1,
b-a b-a
/l(b)-—a_ a-a

A,"(l)=—_b__a = b s =),

Theorem 7. Let T=<{[a,b],L}>, where a=\ (b),
then I (u,0= A" holds forallu € [0,1] if and only if I(x,a)= A (x)holds

for all xE€[a,b] .

Proof . Straightforward verification by using the definition of the residuated implication, In(x,y):=Sup
{z€[0,1] : T(x,z)< y}, and the definitionof A,> and the increasing linear bijection between
[0,1]and [a,b] as follows :

IL(w0)= A,® (u) holdsforallu €[0,1]

if and only if
Ax(b-a)+a)—-a
b-a




Sup{ z€[0,1]| T(x,z )< 0}= holds forallu €[0,1].

That is ,if and only if (with x:=u(b-a)+a , and t:=x(b-a) +a)

- - A(x)—a
Sup{ f-a tt €[a,b] , T(X"4, 1__1) <0}= 2‘3_ holds for all x €[a,b].
b-a b-a b-a a

This is equivalent to

Sup{tjtE[a,b], T(x,t) < a}=A(x) holds for all xE[a,b],
which is equivalent to

I(x,a= A(x) forall x€E([ab].

References :

(1]

(2]

3]

[4]

D.Dubois , H.Prade , Fuzzy Sets and Systems :Theory and Applications , Mathematics in science and

Engineering , Academic Press ,New York,1980.

D.Dubois , H.Prade , Fuzzy Sets in approximate reasoning , Part 1:inference with possibility
distributions , Fuzzy sets and Systems:40(1991)143-202.

D.Dubois , L.Jéro me , H.Prade , Fuzzy sets in approximate reasoning ,Part 2:logical
approaches , Fuzzy Sets and Systems 40(1991)203-244.

P.Burillo , N.Frago , R.Fuentes , Inclusion grade and fuzzy implication operators ,

Fuzzy Sets and Systems,114(2000)41 7-429.



