Some Results on Lukasiewicz generalized operators

Wang Hong Wei

(Department of Mathematics, Lin Yi teachers College. Lin Yi 276005, China)

Abstract : In this paper ,some results of Lukasiewicz generalized operators are obtained. We provide a list of properties for λ and μ functions.

Keywords: Implication operators, strong negation, residuated implication.

In the fuzzy logic literature, that extends classical Boolean implication, the classical ones are considered $p \rightarrow q$ for proposition p and q, are defined (Table 1)

Table 1

→	0	1
0	1	1
1	0	1

Thus, the maps considered are $I : [0,1] \times [0,1] \rightarrow [0,1]$, in such a way that the true valued of $(p \rightarrow q)$ are given By I(v(p), v(q)). Dbois and Prade proposed an interesting classification operators used in the bibliography.

From an axiomatics point of view, Dubois and Prade provide a list of properties which these operators must satisfy [1-3]. Concerning the implication operators, Lukasiewicz is the unique operator that verifies the whole of Duboi and Prade's properties.[2-3]

In [4], P. Burillo et al. introduced Lukasiewicz generalized is the unique operators as maps given by $L(a,b)=\min(1,\lambda(a)+\mu(b))$, $(a,b)\in[0,1]\times[0,1]$, with λ and μ functions from [0,1] to [0,1]. In this paper, some properties on Lukasiewicz generalized operators are obtained.

Definition $1^{[4]}$: Lukasiewicz generalized operators are the maps L: $[0,1] \times [0,1] \rightarrow [0,1]$. such that L(a,b)=min(1, λ (a)+ μ (b)), \forall a,b $\in [0,1]$, where functions λ , μ : $[0,1] \rightarrow [0,1]$

verifing λ (0)+ μ (1)=1 and λ (1)+ μ (0)=0.

The limit conditions required for the functions λ and μ are sufficient to assure the operator L is a generalization of classical implication.

Theorem 1^[4]. Under the conditions stated in Definition 1,the following properties are verified:

(1)
$$L(0,b)=1$$
 $\forall b \in [0,1]$

(2)
$$L(a,0)= \lambda(a) \quad \forall a \in [0,1]$$

(3)
$$L(a,1)=1 \forall a \in [0,1]$$

(4)
$$L(1,b)= \mu(b) \quad \forall b \in [0,1]$$

(5)
$$L(a,b)=1 \Leftrightarrow \lambda(a)+\mu(b) \geq 1 \forall a,b \in [0,1]$$

(6)
$$L(a,b)=0 \Leftrightarrow \lambda (a)=1 \text{ and } \mu (b)=0$$

Remark 1: The valued L(a,b) depends on values a and b.

Theorem 2. Let L be defined with the conditions of Definition 1. Then L verifies

$$L(a,b)=L\sqrt{1-b}$$
 ,1-a²), \forall a,b \in [0,1], iff λ (p)= μ (1-p²).

Proof.
$$(\Rightarrow)$$
 If $L(a,b)=L(\sqrt{1-b}, 1-a^2)$, $\forall a,b \in [0,1]$,

then we have that $L(a,0)=L(1, 1-a^2)$, $\forall a \in [0,1] (b=0)$

and ,by Theorem 1, that $L(a,0)=\lambda$ (a), and $L(1,1-a^2)=\mu$ (1-a²) \forall $a\in[0,1]$ therefore λ (a) = μ (1-a²).

(⇐) Conversely, if
$$\lambda(p) = \mu(1-p^2)$$
, $\mu(p) = \lambda(\sqrt{1-p})$, $\forall p \in [0,1]$, then $L(a,b) = \min(1, \lambda(a) + \mu(b))$

$$= \min(1, \mu(1-a^2) + \lambda(\sqrt{1-b}))$$

Remark 2:

①
$$L(0,0)=L(1,1)=L(0,1)=1$$
 (Theorem 1 (1))

②
$$\lambda(0) = \mu(1) = 1, \lambda(1) = \mu(0) = 0.$$

Theorem 3. $L(a,b)=1 \Leftrightarrow a \leq b$, then, " \leq " is a partial order.

 $= \min(1, \lambda(\sqrt{1-b}) + \mu(1-a^2)) = L(\sqrt{1-b}, 1-a^2).$

Proof. Since min(1,
$$\lambda$$
 (a)+ μ (b))=1 $\Leftrightarrow \lambda$ (a)+ μ (b) \geq 1, $\Leftrightarrow \mu$ (1-a²)+ μ (b) $>$ 1.

so
$$a \le b \Leftrightarrow \mu (1-a^2) + \mu (b) \ge 1$$
,, if $a \le b \Leftrightarrow \mu (1-a^2) + \mu (b) \ge 1$, if $b \le c \Leftrightarrow \mu (1-b^2) + \mu (c) \ge 1$, since $b \le b = \mu (1-b^2) + \mu (b) \ge 1$, so $\mu (1-a^2) + \mu (c) + \mu (1-b^2) + \mu (b) \ge 2$, hence $\mu (1-a^2) + \mu (c) \ge 1$, so $a \le c$.

Theorem 4. $\lambda, \mu : [0,1] \to [0,1]$, if $\lambda (a) = 1 - a^2$, then $\lambda (1-a^2) = a^2$.

Proof. If $\lambda (a) = 1 - a^2$, $\forall a \in [0,1]$, $\Rightarrow \lambda (1-a^2) = 1 - (1-a^2)^2 = 2a^2 - a^4 = a^2(2-a^2)$, and for any $a \in [0,1]$, $2-a^2 \ge 1$, then we have: $\lambda (1-a^2) \ge a^2$.

Theorem 5. Let $\lambda, \mu : [0,1] \to [0,1]$, if $\lambda (a) = 1 - a^2$ and $a \le b$, then $\mu (b) \ge a^2$.

Proof. In fact, if $a \le b$, $\forall a, b \in [0,1]$, by Theorem 3, that $a \le b$ iff $\lambda (a) + \mu (b) \ge 1$, and by condition, $\lambda (a) = 1 - a^2$,

Let $\lambda:[0,1] \rightarrow [0,1]$ satisfies following Table 2:

Table 2

therefore $1-a^2+ \mu(b) \ge 1$, result $\mu(b) \ge a^2$.

	14010 2
1.	λ (0)=1 and λ (1)=0
2.	λ nonincreasing and μ nondecreasing
3.	λ (p)= μ (1-p) $p \in [0,1]$
4.	$p \le q \iff \lambda(p) + \lambda(1-q) \ge 1$
5.	λ continuous

We will give now a theorem of characterization of the function $\,\lambda\,$ that satisfies conditions of Table 2 .

Theorem 6. Let L satisfy the conditions of Definition 1 and λ verifies Table 2, then the following property holds for any $a,b,c \in [0,1]$:

i f
$$\lambda$$
 (a)=1-a, then $L(a,L(b,c))=L(b,L(a,c))$.

Proof. In fact, if
$$\lambda$$
 (a)=1-a, \forall a \in [0,1],
then L(a,L(b,c))=min (1, λ (a)+ λ (1-min(1, λ (b)+ λ (1-c)))

$$= \min (1, 1-a+1-(1-\min(1,1-b+c)))$$

$$= \min (1, 1-a+\min(1,1-b+c)))$$

$$L(b,L(a,c))= \min (1, 1-b+\min(1,1-a+c)))$$

There are three possible different cases:

①
$$a, b \le c \Rightarrow L(a,L(b,c))=1=L(b,L(a,c))$$

②
$$a, b \ge c \implies L(a,L(b,c)) = min(1, 1-a+1-b+c) = L(b,L(a,c))$$

$$3$$
 $a \le c \le b$, then, $L(a,L(b,c))=1=L(b,L(a,c))$.

Therefore, when λ (a)=1-a, then L(a,L(b,c)) = L(b,L(a,c)), λ (x) is a strong negation, λ (x)=1-x. Now, if each λ :[0,1] \rightarrow [0,1], and for each summand ([a,b],L), we define a strong negation λ_a^b as follows:

$$\lambda_a^b(x) = \frac{\lambda(x(b-a)+a)-a}{b-a}$$
.

Straightforward calculation shows that λ_a^b is indeed a strong negation.

In fact,

$$\lambda_{a}^{b}(0) = \frac{\lambda(a) - a}{b - a} = \frac{b - a}{b - a} = 1,$$

$$\lambda_a^b(1) = \frac{\lambda(b) - a}{b - a} = \frac{a - a}{b - a} = 0.$$

Theorem 7. Let $T = \langle \{[a,b],L\} \rangle$, where $a = \lambda$ (b),

then $I_L(u,0)=\lambda_a{}^b$ holds for all $u\in[0,1]$ if and only if $I_T(x,a)=\lambda(x)$ holds for all $x\in[a,b]$.

Proof. Straightforward verification by using the definition of the residuated implication, $I_T(x,y)$:=Sup $\{z \in [0,1] : T(x,z) \le y\}$, and the definition of λ_a^b and the increasing linear bijection between [0,1] and [a,b] as follows:

$$I_L(u,0)=\lambda_a^b$$
 (u) holds for all $u\in[0,1]$ if and only if

$$\frac{\lambda(x(b-a)+a)-a}{b-a}$$

$$\sup\{z \in [0,1] \mid T(x,z) \le 0\} =$$

holds for all $u \in [0,1]$.

That is ,if and only if (with x:=u(b-a)+a, and t:=x(b-a)+a)

$$\sup\{\frac{t-a}{b-a} \mid t \in [a,b], T(\frac{x-a}{b-a}, \frac{t-a}{b-a}) \le 0\} = \frac{\lambda(x)-a}{b-a} \quad \text{holds for all } x \in [a,b].$$

This is equivalent to

$$\sup\{t|t\in[a,b], T(x,t) \le a\} = \lambda(x)$$
 holds for all $x\in[a,b]$,

which is equivalent to

$$I_T(x,a)=\lambda(x)$$
 for all $x \in [a,b]$.

References:

- [1] D.Dubois, H.Prade, Fuzzy Sets and Systems: Theory and Applications, Mathematics in science and Engineering, Academic Press, New York, 1980.
- [2] D.Dubois, H.Prade, Fuzzy Sets in approximate reasoning, Part 1:inference with possibility distributions, Fuzzy sets and Systems:40(1991)143-202.
- [3] D.Dubois, L.Jérō me, H.Prade, Fuzzy sets in approximate reasoning, Part 2:logical approaches, Fuzzy Sets and Systems 40(1991)203-244.
- [4] P.Burillo, N.Frago, R.Fuentes, Inclusion grade and fuzzy implication operators, Fuzzy Sets and Systems, 114(2000)41 7-429.