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0. Introduction

Let X be a nonempty set. In 1965, Zadeh [16] introduced the idea of fuzzy subset A of X as a
mapping A : X — I(the closed interval [0,1]). Later many authors generalized the idea of fuzzy
subset in different directions. In [1] & [2], Atanassov introduced the concept of intuitionistic
fuzzy set A = {< z, pa(z),va(z) >: z € X} where ps: X = I and v4 : X — I are such that
pa(z) +va(z) <1, Vz € X. Atanassov himself and many other authors (see [4], [7], [10],
[11] etc.) studied different properties in intuitionistic fuzzy setting.

In this paper we introduce a generalized type of intuitionistic fuzzy set and derive various
results in this setting.

1. Generalized intuitionistic fuzzy sets

Definition 1.1 Let X be a nonempty set. A generalized intuitionistic fuzzy set (GIF) A on
X is an object having the form

A = {< z,pa(z),va(z) >: 7z € X} (%)
where the functions u4 : X — I and v4 : X — I satisfy the condition

pa(z) Ava(z) <05, VzeX (%)



For each z € X, ps(z) and v4(z) are called the degree of membership and the degree of non-
membership, respectively, of z to A. The condition (**) is called the generalized intuitionistic
condition (GIC).

For simplicity, we shall use A = (u4,v,4) in place of (*).
The collection of all GIFs on X is denoted by C(X).

Basic algebraic operations on C(X)

Let A,B,A; € C(X), Vi € I. Then inclusion, equality, complementation, arbitrary union
and arbitrary intersection on C(X) is defined as follows :

(1) AC B & pu(z) < pp(z) and v4(z) > vp(z), Yz € X,

(2)A=B& AcBand BCA,

(3) A= (VAil“'A)I

(4) Ui A = (Vipa,, Aiva,),

(5) MiA; = (Aipsa;, Viva,)-

Definition 1.2 A generalized intuitionistic fuzzy point (GIFP) P on X is a GIF such that
3 an £ € X satisfying up(z) > 0 and up(y) =0, ve(y) =1, V y(# z) € X.

Such a GIFP is denoted by P,. If for a GIFP P, up(z) = a and vp(z) = b, then the P, is
also denoted by (a, b),.

Let A € C(X). Then the GIFP P; is said to belong to A if up(z) < ua(z) and vp(z) > va(z).
This is denoted, symbolically, by P,€A.

Theorem 1.3 A =U{P, : P,€A}, V A € C(X).

Example 1.4 Let X = {a,b,c}. Then A = {(a,0.8,0.4), (5,0.3,0.9),(c,0.6,0)} is a GIF on
X. But A is not an intuitionistic fuzzy set on X.

Definition 1.5 We define 0 = {0, 1) and 1 = [T, 0).

Theorem 1.6 For all A, B,C, B; € C(X), i € I, we have
Mo0cAci,

@ @) =1 d)=30,

3)ACBand BCC= ACC,

(4) AL BC AUB; A,B> AN B,

(5) AUB=BUA; ANB=BnA,

(6) AU(BUC) = (AUB)UC; AN(BNC)=(ANB)NC,
(1) Au (MNB;) =Ni(AU B;); AN (UiB;) = Ui(AN By),
(8) AcB« AD B,

(9) (UiB;) = nyB;; (NiB;) = UiB;,

(10) A = A.




Definition 1.7 Let X and Y be two nonempty sets and f : X — Y be a mapping. Let
A € C(X). Then the image of A, under f, denoted by f(A) = (i(4), V(4)), is defined by

1Y) ={ V{pa(z):z € 7))}, if ) #¢

otherwise

Vf(A)(y)={ {VA(z) $€f l(y)} if f—l(y)¢¢

otherwise

Let B € C(Y). Then the preimage of B, under f, denoted by f~}(B) = (us-1(s), ¥5-1(m)), i
defined by

ns-1)(z) = pe(f(2)), vi-1(B)(2) = vB(f(x))-

Theorem 1.8 Let A, A; € C(X) and B,B; € C(Y), i€ I,j € J and f : X — Y be a function.
Then

(a) Ay C A; = f(A1) C f(42),

() By C B; = f7'(B1) C f~}(Ba),

(¢) £(A) D [f(A)], if f is surjective,

(d) f~(B) = [f~(B)],

(€) AC F~X(f(A)), the equality holds if f is injective,

(f) f(f~Y(B)) C B, the equality holds if f is surjective,
(9) F71(U;B;) = U;£71(By),

(k) f71(n;B;) = N;f~1(B;),

() f(UiA) = Uif(As),

(7) F(M:A;) C Nif (A;), the equality holds if f is injective,
(k) If g:Y — Z be a mapping such that g~ : Z = Y then (gof)(C) = f~(g7(C)), for
any C € C(Z), gof is the composition of g and f.

2. Generalized intuitionistic fuzzy relations

Let X, Y and Z be three ordinary nonempty sets.

Definition 2.1 A generalized intuitionistic fuzzy relation is defined as a generalized intuition-
istic fuzzy subset of X x Y, having the form

R={<(z,y), sr(z,9),vr(z,9) > : z€ X, yeY}

where up : X xY — [0,1], vg : X x Y — [0,1] satisfy the condition pr(z,y) A vr(z,y) <
0.5, V(z,y) e X xY.

The collection of all GIFRs on X x Y is denoted by GR(X x Y).

Definition 2.2 Let R be a GIFR on X x Y. Then we define inverse relation of R, denoted
by R71, by

#r-1(y, z) = pr(z, ), vr-1(y,7) = vr(T,9), V (z,y) € X X Y.
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Definition 2.3 Let P,Q € GR(X x Y). Then for every (z,y) € X x Y we define
(a') P<Qe #P(ZE, y) < “Q(z: y) and VP(x7 y) 2 VQ(z7 y):

(b) P S Q & pp(z,y) < po(z,y) and ve(z,y) < vo(z,9),

() PUQ = {< pp(z,y) V po(z,y),ve(z,y) Avg(z,y) > : (z,y) € X xY},

(d) PNQ = {< pr(z,y) A ug(z,9),vr(z,¥) V1g(z,v)) > : (z,9) € X XY},
(€) P ={< vp(z,y),ur(z,y) > : (z,y) € X x Y}

Theorem 2.4 Let P,Q,R € GR(X xY). Then

(@) P<Q@Q=R11< P

(®) (RUP)'=R1luP,

(c) (RNP)'=R1'NnP

(d) (P =P,

(e) PN(QUR)=(PNQ)U(PNR); PU(QNR)=(PUQ)N(PUR),

(f) PUQ>P,Q; PNQ<PQ,

() IfP>Qand P>Rthen P>QUR,; if P<Qand P< Rthen P<QNR.

Definition 2.5 Let R € GR(X xY) and P € GR(Y x Z). Then we define composed relation
on X x Z, denoted by PoR, by

PoR = {< (z,2), ppor(Z, 2), VPor(Z, 2) >: x € X, 2 € Z}, where

1por(Z; 2) = Vy{Br(z,¥) A pr(y, 2)}, vPor(Z, 2) = Ay{vr(z,y) V vpe(y, 2)}.

Definition 2.6 Let R € GR(X xY) and P € GR(Y x Z). Then we define another composed
relation on X x Z, denoted by P * R, by

P R = {< (2, 2), bp.r(Z, 2),Vp.r(Z,2) >: z € X, 2 € Z}, where
1pror(Z, 2) = Ay{Br(Z, ) V pp(Y, 2)}, vrer(, 2) = Vy{vr(z,y) Ave(y, 2)}-

Definition 2.7 Let P,R € GR(X x X). Then P and R are said to commute if PoR = RoP.
Theorem 2.8 For Re GR(X xY), P € GR(Y x Z), (PoR)™ = R™'oP~! holds.

Theorem 2.9 If R, R; e GR(X xY) and P,P,€ GR(Y x Z), i =1,2, then
(a) P, < P, = PioR < PyoR,

(0) R < R; = PoR, < PoR;,

(C) P, < Py = PioR < PyoR,

(d) R { Ry = PoR; < PoR,,

(e) If R,P € GR(X x X) and P < R then PoP < RoR.

Theorem 2.10 For Re GR(X xY), Q € GR(Y x Z) and P € GR(Z x U)
(PoQ)oR = Po(QoR) holds.

Theorem 2.11 For each R€ GR(X xY) and P, € GR(Y x Z),i€ I,
(a) (UiF)oR = U;(PioR),
(b) (n,'P,')OR = ﬂ,‘(.P.'OR)



holds.

Here we shall define reflexivity, antireflexivity and study some of their properties.
Definition 2.12 Let R € GR(X x X). Then

(a) R is reflexive of type-1 if

pr(z,z) =1, vg(z,z) =0, Vz € X.

(b) R is reflexive of type-2 if

pr(z,z) =1, Vz € X, vp(z,z) Vvr(y,y) < vr(z,y), Vz,y€X.

(c) R is reflexive of type-3 if

pr(z, ) A pr(y,y) = 05V pr(z,y), Vz,y € X, vr(z,z) =0, Vz € X.

(d) R is reflexive of type-4 if

Br(T, T) A pr(Y,Y) 2> pr(2,Y), vr(z,7) V vR(y,y) < vr(z,y), V2,9 € X.

Definition 2.13 Let R € GR(X x X). Then

(a) R is antireflexive of type-1 if

pr(z,z) =0, vr(z,z) =1, Vz € X.

(b) R is antireflexive of type-2 if

#R(“", IB) =0, Vz e Xy VR(xa .’D) A VR(y’ y) 205V VR(xay)v v I,y € X.
(c) R is antireflexive of type-3 if

pr(z,z) V pr(y,¥) < pr(z,9), V 2,y € X, vg(z,z) =1, Vz € X.

(d) R is antireflexive of type-4 if

1r(z, ) V pr(y,Y) < pr(z,9), vr(z,z) Ave(y,y) 2 va(z,y), V 2,y € X.

Theorem 2.14

(a) Reflezivity (antireflerivity) of type-1 = reflezivity (antireflezivity) of type-2, 8 and 4,
(b) Reflezivity (antireflezivity) of type-2 => reflezivity (antireflezivity) of type-4,

(c) Reflezivity (antireflexivity) of type-S => reflezivity (antireflezivity) of type-4.

Theorem 2.15
(a) If R € GR(X x X) is reflexive of any type then R < RoR,
(b) If R € GR(X x X) is antireflezive of any type then R > R+ R.

Next we give examples of GIFRs which satisfy the property R < RoR (R > R* R), but R is
not reflexive (antireflexive) of any type.
Example 2.16 (a) Let X = {a,b,c} and R € GR(X x X) be given by

a b c a b c

_|a 04 06 01 _la 03 05 09
FR=1% 06 07 06| "= |b 03 03 03
c 01 0 03 c 05 03 0.6

Then R < RoR, but R is not reflexive of any type.



(b) Let X = {a,b,c} and R € GR(X x X) be given by

a b c a b c

_la 04 06 03 _|a 03 05 06
PR=1p 06 07 06" |b 03 03 03
c 03 04 03 ¢ 05 05 .06

Then R > R x R, but R is not antireflexive of any type.

Theorem 2.17 Let R, R, Ry € GR(X X X). Then

(a) If R is reflerive (antireflezive) of any type, then RoR (R * R) is reflezive (antireflexive)
of the same type,

(b) If R is reflezive (antireflezive) of the type-i, then R~ is reflezive (antireflezive) of the
type, i = 1, 2, 8 and 4,

(c) If both R, and Ry are reflerive (antireflerive) of the type-i, then Ry A Ry (R, V Ry) is
reflezive (antireflezive) of the type-i, i = 1, 2, 8 and 4,

(d) If R, is reflexive (antireflerive) of the type-1, then R, V Ry (Ry A Rp) is s0. If Ry and R,
are reflezive (antireflezive) of the type-i, then Ry V R, (Ry A Ry) is reflezive (antireflezive) of
the type-i, i = 2, 8 and 4.

Definition 2.18 A relation R € GR(X x X) is called symmetric if R = R™! i.e., if for all
(.’B, y) € X x X’ MR(‘L" y) = “R(ya I), VR(ma y) = VR(ya IC)-

Theorem 2.19
(a) If P,R € GR(X x X) are symmetrical, then PoR = (RoP)™',
(b) If R is symmetrical then RoR s symmetrical.

Definition 2.20
(1) We define R € GR(X x X) to be transitive if R > RoR,
(2) We define R € GR(X x X) to be c-transitive if R < R* R.

Definition 2.21 Let R € GR(X x X).

(a) The transitive closure of R is defined to be the minimum GIFR R on X x X which contains
R and it is transitive, that is to say

(1) R< R,

(2) RoR < R,

(3) if P € GR(X x X), R< P and P is transitive, then R < P.

(b) The c-transitive closure of R is defined to be the biggest c-transitive relation R € GR(X x
X) contained in R.

Notation 2.22 We denote R! = R, R® = RoRo.....n times, n > 2 and R*! = R, R™ =

Theorem 2.23 For every R € GR(X x X), it is verified that :



(a) R=R'VR2VR}V...VR"V... =V2 R,

() R=R*ARZARZA.....AR™A.....= A2, R".

Theorem 2.24 Let R, Pc GR(X x X). Then R<P= R< P and K >P.
Corollary 2.25 For every R € GR(X x X), K < R < R holds.

Corollary 2.26
(1) If R € GR(X x X) is reflerive of any type and transitive then R = RoR.

(2) If R € GR(X x X) is antireflezive of any type and c-transitive then R = R* R.

3. Generalized intuitionistic fuzzy families

Shostak [14] introduced the idea of fuzzy family and gave definitions of union, intersection of
a fuzzy family. Later Coker [8] defined intuitionistic fuzzy family (IFF) and studies properties
related to union, intersection, complement and functional image of IFF. In this section we give
the definition of generalized intuitionistic fuzzy family (GIFF) and study various properties

of GIFF involving union, intersection etc.

Definition 3.1 A GIF G on the set C(X) is called a generalized intuitionistic fuzzy family

(GIFF) on X.

Definition 3.2 A GIFF B on X is said to be a finite GIFF if for some positive integer

n, 3 By, By, ....., By € C(X) s..

ps(B;i) >0, 1<i<n

and

us(A) =0, vs(4) =1, if A € C(X)\{By, B, ..., Bn}.

If ug(B;) = p; and vg(B;) = ¢;, 1 <t < n, then B is expressed as B = {(pf:;l), very (p’i';")}.

Notation 3.3 Let G be a GIFF on X. We denote
S(G)={rel(X) : pe()) >0} and S*(G) = {r € C(X) : vg(A) <1}.

Definition 3.4 Let G be a GIFF on X. Then the GIFF G* = (ug-, vg+) defined by pg-(4) =

pe(A) and ve-(A) = vg(A4), VA € C(X), is called the complement of G.

Definition 3.5 Let G be a GIFF on X. Then the union P = UG and the intersection = NG

of this GIFF are defined as follows :

(a) P = UG is the GIF P = (up,vp), where
#p(z) = Vaeco{pe(A) A pa(2)}, ve(s) = Aecx){ve(4) Vva(z)}, Vz € X.
(b) @ = NG is the GIF Q = (g, vq), Where
#a(z) = Asccix) {va(4) V pa(2)}, vo(T) = Vaecx){ne(4) Ava(z)}, Vz € X.

Theorem 3.6 Let G be a GIFF on X. Then we have



(a) UG = NG*,
(b) NG = UG".

Let X and Y be two nonempty sets and f : X — Y be a function.
Definition 3.7 (a) Let G be a GIFF on X. If f is injective, then the image f(G) =
([lf(g), V_f(G)) of G under f is defined by

—1 . i
A) = {llG(f (A)) if A<I1px),
He (G)( ) 0 otherwise

-1 . < i
vre)(A) = {llfc;(f (4)) gt}ir_wilsfem’

where 1 10) = (X£x), Xv-£(X))-

(b) Let H be a GIFF on Y. Then the preimage f~(H) = (ps-1(sm), Vs-1(xr)) of H under f is
defined by

ps-1my(B) = V{pr(C); B = f71(C),C e C(Y)},

v11ny(B) = Mrn(C); B = 11(C), C € ()}, B € C(X).

Theorem 3.8 Let f: X - Y be a mapping. If H is a GIFF on Y, then
(s) f~'(UH) =Uf~'(H),

(b) fH(NH) =nf~'(H).

If G is a GIFF on X and f is injective, then

(¢) F(UG) = Uf(G),

(d) F(NG) =nf(G).

4. Generalized intuitionistic fuzzy topology

In [12] and [13], Samanta et al. introduced the definition of gradation of openness of fuzzy
subsets and thereby generalized the definition of fuzzy topology as introduced by Chang
[6]. Independently, some other authors including Shostak [14], Ramadan [9], Ying [15] etc.
generalized the Chang’s definition of fuzzy topology. In this section, we give the definition
of generalized intuitionistic fuzzy topology (GIFT) by incorporating the idea of GIFF and
using the ideas of union and intersection of GIFF. Perhaps in fuzzy setting also this idea of
fuzzy topology (by using the concept of fuzzy family together with the ideas of union and
intersection of a fuzzy family) is new.

Definition 4.1 A generalized intuitionistic fuzzy family 7 on X is said to be a generalized
intuitionistic gradation of openness (GIGO) on X if it satisfies the following conditions :

(1) - (0) = p.(1) = 1, v, (0) = v, (1) =0,

(2) for any GIFF G on X,

1 (UG) = Asesig)(mr(4) A pg(A)),

vr(UG) < Vaes+(6)(vr(4) V v(4)),

(3) for any finite GIFF B = {2L, L0, ..., 2Pas} in X,
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pr(NB) > AL (e (B:) A ps(Bi)),
v(NB) < Vi (vr(B;) V vs(Bi))-

If 7 is a GIGO on X then 7 is also called a generalized intuitionistic fuzzy topology (GIFT)
on X and (X,7) is called a generalized intuitionistic fuzzy topological space (GIFTS). p,
and v, may be interpreted as generalized gradation of openness and generalized gradation of
nonopenness, respectively.

In the definition of gradation of openness 7 on X in fuzzy setting Samanta et al. [13] considered
the conditions as

(i) pr(Uicads) = Aieasr (X)),

(i) pr(NByhe) 2 ALy sr(N),

where U;—a\; and N2, \; are respective union and intersection of the crisp collections {); , ¢ €
A} and {N , i = 1,2,....,n} of fuzzy subsets of X; instead in the present setting we have
taken them GIFs G and B of C(X) respectively and in condition (2) and (3) of Definition
4.1 of a GIGO we have taken correspondingly union and intersection of G and B respectively
involving the gradation of A (€ C(X )) w.rt. G and B. Thus a definition of gradation of
openness (GO) can be derived from the Definition 4.1 of a GIGO and in this definition of GO,
the scope of dealing with the fuzziness in the fuzzy topology is improved.

Definition 4.2 A GIFF F on X is said to form a generalized intuitionistic gradation of
closedness (GIGC) on X if it satisfies the following conditions :

(1) pr@) = pr(d) =1, v£(0) =v#(1) =0,

(2) for any GIFF G on X,

pr(0G) > Asesig)(ur(A) A pg(A)),

ve(NG) < Vaes-(0)(VF(4) V vg(4)),

(3) for any finite GIFF B = {(T:%{J’ (—m%;;, ey G%;"—)} in X,

ur(UB) > AL, (ur(Bi) A us(Bi)),

v(UB) < V&, (v(B:) V vB(Bi))-

Theorem 4.3
(a) Tisa GIGO on X iff T° is @ GIGC on X,
(b) Fisa GIGCon X iff F* isa GIGO on X.

Theorem 4.4 Let (X,7) be ¢ GIFTS andY C X. Let us define two mappings piry, Viy :
C(Y) — I by the rule :

pry (A) = V{pr(4) : A € C(X), AlY =2}, v () =Mur(4) 1 A€ C(X), A/Y = A}

Then Ty = (firy,Vny) 38 6 GIFT 0n Y.

Theorem 4.5 Let (Y, 7y) be a subspace of the GIFTS (X,7) and A € C(X). Then
(0) pmg () = Vit () © A€CX), ATY =N}, v () = Alvr(4) = A€CX), A]Y =
A}



(b) fZcYcX, then piry = (lry)2s Vrz = (Vry)2-
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