Countable Paracompactness on L-Fuzzy topological spaces*

Xuebin Leing

(Department of mathematics and System Science, Liaocheng Teacher's University, Shandong 252059, P.R. China)

Abstract: Based on III strong fuzzy paracompactness, this paper introduces definition of L-fuzzy countable paracompactness and illustrates its basic characters. Moreover it is proved that L-fuzzy countable paracompactness is $L-good\ extension$. Characters of L-fuzzy countable are studied extensively.

Key words: L-fuzzy countable paracompactness, α - operator, α - closed sets, L-fuzzy completely normal spaces, fuzzy lattice, L-fuzzy topological spaces

Introduction

It is necessary to extend countable paracompactness to L-fuzzy topology because countable paracompactness is of importance in general topology. In the recent years there are many kinds of paracompactness in L-fuzzy topology. Among these paracompactness, III strong fuzzy paracomapactness is very popular paper introduces countable paracompactness in L-fuzzy topological spaces by virtue of III strong fuzzy paracompactness. It is proved that countable paracompactness is L-good extension. Furthermore, this paper gives a series of characters. In addition three properties are studied. First, the multiplication of a strong fuzzy compact set and a countable paracompact set is a countable paracompact set; Second, completely normal spaces are countable paracompacat; Last, countable paracompactness is genetic for closed sets.

I Preliminary

The detonation of L stands for fuzzy lattice^[7] in this paper and L-fts is short for L-fuzzy topological spaces. For $A \in L^X$ $\alpha \in M(L)$ and $A \not A \subset L^X$

$$\begin{split} &\tau_a(A) \stackrel{\Delta}{=} \left\{ x \in X \mid A(x) \geq a \right\}, l_{a'}(A) = \left\{ x \in X \mid A(x) \not \leq a' \right\} \\ &\tau_a(\mathcal{A}) = \left\{ \tau_a(A) \mid A \in \mathcal{A} \right. \left. \right\}, l_{a'}(\mathcal{A}) = \left\{ l_{a'}(A) \mid A \in \mathcal{A} \right. \left. \right\}. \end{split}$$

Other signs are introduced in the paper^[7].

Definition 1.1^[6] Let Φ be a set family in L - fts. $A \in L^X$, $a \in M(L)$. Φ is called α – family

^{*} Supported by the Natural Science Fund of Shandong

of A, if for every molecule of x_a of A whose height is α , there exists $Q \in \Phi$ such that $x_a \not\equiv Q$. Φ is called α^{\bullet} – covering of A, if for every molecule x_a of A whose height is α , there exists $Q \in \Phi$ such that $x_a \leq Q$.

Definition 1.2^[7] Let (L^X, δ) be a L - fts, $A \in L^X$ and $\mathscr{A} = \{A_t \mid t \in T\} \subset L^X \ \mathscr{A}$ is $\alpha - \text{locally}$ finite in A, if for every molecule of X_a of A whose height is α , there exists $P \in \eta^-(X_a)$ and finite set $T_0 \subset T$ such that $\forall t \in T - T_0, A_t \leq P$. \mathscr{A} is $\alpha - \text{discrete}$ in A, if T_0 is a unit set.

Lemma 1.3^[6] Let $f:(L^{X_1},\delta_1) \to (L^{X_2},\delta_2)$ be continuous L - value Zadeh function. and $a \in M(L)$. If $\mathscr{B} \subset L^{X_2}$ is α - locally finite in D. $f^{-1}(\mathscr{B}) = \{f^{-1}(B) \mid B \in \mathscr{B} \mid \exists i \in \alpha \text{ - locally finite in } f^{-1}(D)$.

In the following part for $A \in L^X$, $a \in M(L)$, $\mathcal{A} \in L^X$

$$A^{q_a} = \bigvee \{ x_a \in M^{\bullet}(L^X) \mid x_a \not\equiv A \}, \ \mathscr{A}^{q_a} = \{ A^{q_a} \mid A \in \mathscr{A} \}.$$

Lemma 1.4^[6] Let (L^X, δ) be $L - fts \cdot D \in L^X$, $a \in M(L)$, and $\mathscr{A} \subset L^X \cdot D \wedge \mathscr{A}^{-q_a}$. is α – locally finite in D if and only if $\tau_a(D)$ I $(\tau_a(\mathscr{A}))'$ is locally finite in the subspace $\tau_a(D)$ of general topological space $(X, l_{a'}(\delta))$.

II Definitions and characters

Definition 2.1 Let (L^X, δ) be $L - fts \cdot D \in L^X$, $a \in M(L) \cdot D$ is $\alpha - III$ countably paracompact $(\alpha - \text{countably paracompact})$, if for every $\alpha - \text{countable remote domain family } \Phi$ of D there exists $\alpha - \text{remote domain family } \Psi$ of D satisfying the following conditions:

- (i) Ψ is corefine of Φ , namely $\forall B \in \Psi, \exists A \in \Phi$ such that $A \leq B$.
- (ii) $D \wedge \Psi^{q_a}$ is locally finite in D where $\Psi^{q_a} = \{B^{q_a} : B \in \Psi\}$.

D is α – countably paracompact if D is α – countably paracompact for $\forall a \in M(L)$. If D equals to 1_X , (L^X, δ) is α – countably paracompact or countably paracompact.

Theory 2.2 $\alpha - III$ paracompact set in L - fts is α - countably paracompact set.

Theory 2.3 Countable strong paracompact set in L-fts is countable paracompact set.

Theory 2.4 Let (L^X, δ) be $L - fts \cdot D \in L^X$ and $a \in M(L) \cdot D$ is α - countably

paracompact if and only if $\tau_a(D)$ is countably paracompact in $(X, l_{a'}(\delta))$

Proof Let D be α – countablly paracompact in (L^X, δ) and $\mathcal U$ countable open covering in the subspace of $\tau_a(D)$ of $(X, l_{a'}(\delta))$. Then there exists countable subfamily $\Psi \subset \delta$ such that $\tau_a(D)$ I $l_{a'}(\psi') = \tau_a(D)$ I $(\tau_a(\psi))' = \mathcal U$, Also Ψ is α – countable remote family of D. From α – countable paracompactness of D there exists α – remote domain family Φ of D such that Φ is corefine of Ψ and $D \wedge \Phi^{q_a}$ is α – locally finite in D. It is easy to know that $\tau_a(D)$ I $l_{a'}(\Phi')$ is refine of $\mathcal U$ and open covering of subspace $\tau_a(D)$ of $(X, l_{a'}(\delta))$. By Lemma 1.4 it is locally finite in $\tau_a(D)$.

Therefore $\tau_a(D)$ is countable paracompact in $(X, l_{a'}(\delta))$.

On the contrary let $\tau_a(D)$ be countable paracompact in $(X, l_{a'}(\delta))$. Because Φ is α – countable rmote family of D in (L^X, δ) , $\tau_a(D)$ I $l_{a'}(\Phi')$ is countable open covering of subspace $\tau_a(D)$ of $(X, l_{a'}(\delta))$. Then there exists $\Psi \subset \delta$ such that $l_{a'}(\Psi')$ I $\tau_a(D)$ is locally finite open covering of subspace $\tau_a(D)$ of $(X, l_{a'}(\delta))$ and corefine of $\tau_a(D)$ I $l_{a'}(\Phi')$. So Ψ is α – remote family of D in (L^X, δ) . By Lemma we know that $D \wedge \psi^{q_a}$ is α – locally finite in D. For arbitrary element B of Ψ there exists $A_B \in \Phi$ such that

$$\begin{split} &\tau_a(D) \, \mathrm{I} \quad l_{a'}(B') \subset \tau_a(D) \, \mathrm{I} \quad l_{a'}(A'_B) \, . \mathrm{Let} \, \Omega = \big\{ B \vee A_B \mid B \in \Psi \big\} . \mathrm{Then} \\ &\tau_a(D) \, \mathrm{I} \quad l_{a'}(\Omega') = \big\{ \tau_a(D) \, \mathrm{I} \quad l_{a'}((B \vee A_B)') \mid B \in \Psi \quad \big\} = \big\{ \tau_a(D) \, \mathrm{I} \quad l_{a'}(B') \, \mathrm{I} \quad l_{a'}(A'_B) \mid B \in \Psi \quad \big\} = \\ &\left\{ \tau_a(D) \, \mathrm{I} \quad l_{a'}(B') \mid B \in \Psi \quad \big\} = \tau_a(D) \, \mathrm{I} \quad l_{a'}(\Psi') \, . \end{split}$$

It is easy to prove that Ω is α - remote family of D in (L^X, δ) and corefine of Φ . For arbitrary $P \in \Omega$ there exists $B \in \Psi$ such that $P = B \vee A_B$. Therefore $P^{q_a} \leq B^{q_a}$. Then $D \wedge \Omega^{q_a}$ is α - locally finite if D. So D is α - countable paracompact in (L^X, δ) .

If (L^X, δ) is a weakly induced space^[7], $l_{a'}(\delta) = [\delta]$ for arbitrary $a \in M(L)$.

Corollary 2.5 Let (L^X, δ) be weakly induced L - tfs. The following conditions are equivalent: (i) (L^X, δ) is countable paracompact.

- (ii) there exists $a \in M(L)$ such that (L^X, δ) is α countable paracompact.
- (iii) $(X, [\delta])$ is countable paracompact.

Corollary 2.6 Countable paracompactness is $L-good\ extension$.

In the following part we introduce a new operator. By this new operator we can show countable paracompactness in a novel way.

Definition 2.7 Let (L^X, δ) be $L - fts \cdot a \in M(L)$. A new operator is defined by $a^{\bullet}: L^X \to \delta', \forall A \in L^X, a^{\bullet}(A) = \bigwedge \{ G: G \in \delta' \text{ and } G \lor A \ge a \}.$

Proposition 2.8 Let (L^X, δ) be $L - fts \cdot a \in M(L)$, $A, B \in L^X$, there are following remarks:

- (i) $a^{\bullet}(A) \in \delta'$;
- (ii) $A \vee a^{\bullet}(A) \geq a$;
- (iii) $A \leq B \Rightarrow a^{\bullet}(B) \leq a^{\bullet}(A)$;
- (iv) If $A \in \delta'$ $A \vee B \ge a \Leftrightarrow a^{\bullet}(B) \le A$;
- (v) If $A \text{ and } B \in \delta'$, $A \vee B \ge a \Leftrightarrow a^{\bullet}(B) \le A \Leftrightarrow a^{\bullet}(A) \le B$.

It is easy to know that operator a^{\bullet} is extension of the operator of the paper^[5].

Theory 2.9 Let (L^X, δ) be $L - fts \cdot a \in M(L) \cdot (L^X, \delta)$ is α – countable paracompact if and only if for every α – countable remote domain family Ω of 1_X there exists α – remote domain family Ω of 1_X such that Ω is corefine of Ω and Ω

Proof From theory 2.4 it is enough to prove that conditions of theory 2.9 are equivalent to countable paracomapctness of $(X, L_{a'}(\delta))$.

Let $(X,l_{a'}(\delta))$ be countable paracompact and Ω be α – countable remote domain family of 1_X . Then $l_{a'}(\Omega') = \{l_{a'}(Q') : Q \in \Omega\}$ is countable open covering of $(X,l_{a'}(\delta))$. Therefore there exists open refinement $l_{a'}(\Delta)(\Delta \subset \delta)$ of $l_{a'}(\Omega')$ is locally finite in $(X,l_{a'}(\delta))$. For arbitrary B of Δ there exists $Q_B \in \Omega$ such that $l_{a'}(B) \subset l_{a'}(Q'_B)$. Let $\Psi = \{B' \vee Q_B : B \in \Delta\}$. Then Ψ is corefine of Ω . In addition, Δ' is α – remote domain family of 1_X . So for $\forall x \in X$ there exists $B \in \Delta$ such that $x_a \not \leq B'$, namely

 $x \in l_{a'}(B)$. Therefore $x \in l_{a'}(Q'_B)$, namely $x_a \not\equiv Q_B$. This shows that Ψ is α – remote domain family of 1_X . In the following part we only prove that $a^{\bullet}(\Psi)$ is α – locally finite in 1_X .

For $\forall x \in X$ there exists open domain $l_{a'}(W)$ of x and finite subfamily Δ_0 of Δ such that $l_{a'}(B)$ I $l_{a'}(W) = l_{a'}(B \wedge W) = \emptyset$, for $\forall B \in \Delta - \Delta_0$. It is easy to know that for $W' \in \eta(x_a)$ and $\forall B \in \Delta - \Delta_0$, $B \wedge W \leq a'$ and $B' \vee W' \geq a$. Furthermore, $B' \vee Q_B \vee W' \geq a$. By proposition 2.8 $a^{\bullet}(B' \vee Q_B) \leq W'$. Therefore $a^{\bullet}(\Psi)$ is α – locally finite in 1_X .

On the contrary, let $l_{a'}(\Omega')(\Omega \in \delta')$ be countable open covering of $(X, l_{a'}(\delta))$. So $a^*(\Psi)$ is α – countable remote family of 1_X . Therefore there exists α – remote family Ψ of 1_X such that Ψ is corefine of Ω and $a^*(\Psi)$ is α – locally finite \inf_X . It is easy to know that $l_{a'}(\Psi')$ is open refinement of $l_{a'}(\Omega')$ For $\forall x \in X$ there exists $P \in \eta^-(x_a)$ and finite subfamily Ψ_0 of Ψ such that $a^*(B) \leq P$ for $\forall B \in \Psi - \Psi_0$. So $B \vee P \geq a$ and $l_{a'}(B' \wedge P') = l_{a'}(B')$ I $l_{a'}(P') = \emptyset$. From $l_{a'}(P')$ is open domain of x we know that $l_{a'}(\Psi')$ is locally finite In $(X, l_{a'}(\delta))$. Therefore $(X, l_{a'}(\delta))$ is countable paracompact. End of proof.

In the following part we show α – countable paracompactness via α – family consisting of α – closed sets.

Definition 2.10 Let (L^X, δ) be $L - fts \cdot a \in M(L)$ and $A \in L^X$ A is α – closed if $\forall x_a \in M^{\bullet}(L^X), x_0 \in A^- \Rightarrow x_a \in A$.

Theory 2.11 Let (L^X, δ) be $L - fts \cdot a \in M(L) \cdot (L^X, \delta)$ is α – countable paracompact if and only if for every α – closed α – countable family Ω of 1_X there exists α – closed α – family Ψ of 1_X such that Ψ is corefine of Ω and $a^{\bullet}(\Psi)$ is α – locally finite in 1_X .

Proof Let (L^X, δ) be α - countable paracompact and Ω be α - closed α - countable family of 1_X . From definition of α - closed set we know that $\Omega^- = \{Q^- : Q \in \Omega\}$ is α - countable remote domain family of 1_X . Therefore there exists α - remote domain family Ψ of 1_X such that Ψ is corefine of Ω^- and $a^{\bullet}(\Psi)$ is α - locally finite in 1_X . Because closed set is α - closed set, Ψ above

mentioned satisfied requirement of theory.

On the contrary, let Ω be α – remote domain family of 1_X . So Ω is α – closed and α – countable family. Therefore there exists α – closed and α – family Ψ such that Ψ is corefine of Ω and $a^{\bullet}(\Psi)$ is α – locally finite in 1_X . Consider Ψ^- , Ψ^- is corefine of Ω . By α – closeness of Ψ it is easy to know that Ψ^- is α – remote domain family of 1_X from proposition 2.8 (iii) $a^{\bullet}(\Psi^-)$ is α – locally finite in 1_X . Therefore (L^X, δ) is α – countable paracompact.

Theory 2.12 Let (L^X, δ) be $L - fts \cdot a \in M(L) \cdot \operatorname{So}(L^X, \delta)$ is α - countable paracompact if and only if for every α - remote domain family of $1_X \Phi = \{A_i : i \in N\}$ there exists α - remote domain family of $1_X \Psi = \{B_i : i \in N\}$ such that $A_i \leq B_i$ and $a^{\bullet}(\Psi)$ is α - locally finite in 1_X for $\forall i \in N$.

Proof Let (L^X, δ) be α – countable paracompact and $\Phi = \{A_i : i \in N\}$ be α – countable remote domain family of 1_X . There exists corefine Φ of α – remote domain family Ω . $a^{\bullet}(\Omega)$ is α – locally finite in 1_X . For $\forall B \in \Omega$ there exists $i(B) \in N$ such that $A_{i(B)} \leq B$.

Let $B_i = \bigvee_{i(B)=i} B$. Then $A_i \leq B_i$. Let $\Psi = \left\{B_i : i \in N\right\}$. Then Ψ is α – countable remote domain family of 1_X and corefine of Φ . In the following part it is enough to prove that $a^{\bullet}(\Psi)$ is α – locally finite in 1_X . Because $a^{\bullet}(\Omega)$ is α – locally finite in 1_X for $\forall x_a \in M^{\bullet}(L^X)$ there exists $P \in \eta(x_a)$ and finite subfamily Ω_0 of Ω such that $a^{\bullet}(B) \leq P$ for $\forall B \in \Omega - \Omega_0$. By proposition 2.8 $P \vee B \geq a$. Then $P \vee B_i \geq a$, namely $a^{\bullet}(B_i) \leq P$. Because Ω_0 is finite, The number of B_i whose elements belong to Ω_0 must be finite. Therefore $a^{\bullet}(\Psi)$ is α – locally finite in 1_X .

It is easy to prove sufficienc.

End of proof.

Definition 2.13 Let $\{F_i\}_{i\in N}\subset L^X$ and $a\in M(L)$. $\{F_i\}_{i\in N}$ is α – decreasing if $\tau_a(F_1)\supset \tau_a(F_2)\supset \ldots$.

Theory 2.14 Let (L^X, δ) be $L - fts \cdot a \in M(L)$. Then (L^X, δ) is countable paracompact if and only if for every α - decreasing α - remote domain family $\{F_i\}_{i \in N}$ there exists $\{W_i\}_{i \in N} \subset \delta$ such that

$$W_i' \in \eta_a(F_i), i \in N \text{ and } \prod_{i=1}^{\infty} \overline{l_{a'}(W_i)} = \emptyset$$

Proof It is easy to be proved by theory 2.4 and results of general topology.

III Properties of countable paracompactness

The following theories show that $(\alpha -)$ is closely genetic

Theory 3.1 Let (L^x, δ) be $L - fts \cdot a \in M(L) \cdot A \in L^x$ and $B \in \delta'$.

- (i) If A is α countable paracompact, $A \wedge B$ is α countable paracompact, too.
- (ii) If A is countable paracompact, $A \wedge B$ is countable paracompact, too.

Proof It is enough to prove that (i) is right. Let Φ be α – countable remote family of $A \wedge B$. Then $\Phi Y \{B\}$ be α – countable remote family of A. Because A is α – countable paracompact, there exists α – countable remote family Ψ of A such that Ψ is corefine of $\Phi Y \{B\}$ and $A \wedge \Psi^{q_a}$ is α – locally finite in A. Let $\Omega = \{P \in \psi \mid B \not\equiv P\}$, then Ω is α -countable remote domain family of $A \wedge B$ and corefine of Φ . It is easy to know that $A \wedge \Omega^{q_a}$ is α – locally finite in $A \wedge B$. So $A \wedge B \wedge \Omega^{q_a}$ is α – locally finite in $A \wedge B$. Therefore $A \wedge B$ is α – countable paracompact.

Theory 3.2 Let (L^X, δ) and (L^Y, μ) be L - fts and A be a countable paracompact set of (L^X, δ) . And B is a strong F paracompact set of (L^Y, μ) . Then $A \times B$ is a countable paracompact set of $(L^{X \times Y}, \delta \times \mu)$.

Proof By theory 2.4 $\tau_a(A)$ is a countable paracompact set of $(X, l_{a'}(\delta))$ for $\forall a \in M(L)$. It is easy to know that B strong F compact in (L^Y, μ) if and only if $\tau_a(B)$ is compact in $(Y, l_{a'}(\mu))$ for $\forall a \in M(L)$. From some results of general topology $\tau_a(A \times B) = \tau_a(A) \times \tau_a(B)$ is countable paracompact in $X \times Y, l_{a'}(\delta \times \mu)$. From theory 2.4 this theory is right.

Definition 3.3 Let (L^X, δ) be $L - fts \cdot a \in M(L) \cdot (L^X, \delta)$ is a α - completely normal space if (L^X, δ) is α - normal and for $\forall F \in \delta$ there exist $G_i \in \delta, i = 1, 2, \ldots$ such that $\tau_a(F) = \prod_{i \in N} l_{a'}(G_i)$. If

for $a \in M(L)$ (L^X, δ) is α – completely normal, (L^X, δ) is completely normal.

It is to know that (L^X, δ) is α – completely normal if and only if (L^X, δ) is α – normal and for $G \in \delta$ there exist $F_i \in \delta$, i=1,2,... such that $l_{a'}(G) = U_{\forall a}(F_i)$.

Theory 3.4 Let (L^X, δ) be $L - fts \cdot a \in M(L) \cdot (L^X, \delta)$ is α — completely normal if and only if $(X, l_{\alpha'}(\delta))$ is completely normal.

Theory 3.5 Let (L^X, δ) be $L - fts \cdot a \in M(L)$. If (L^X, δ) is α – completely normal (L^X, δ) is α – countable paracompact.

Proof It is proved by theory 3.4 and some results of general topology.

Theory 3.6 Let (L^X, δ) and (L^Y, μ) L - fts which are induced. If (L^X, δ) is a countable paracompact level normal space^[6] and (L^Y, μ) is a strong F compact II countable space, $(L^{X \times Y}, \delta \times \mu)$ is level normal.

Proof From theory 2.4 $(X, [\delta])$ is a countable paracompact normal space. By [7] $(Y, [\mu])$ is a compact II countable space. So from some results of general topology([8]theory 5.2.7) $X \times Y$ is normal. By [7] $(L^{X \times Y}, \delta \times \mu)$ is generated by $X \times Y$. Therefore $(L^{X \times Y}, \delta \times \mu)$ is a level normal space.

Theory 3.7 Let (L^X, δ) and (L^Y, μ) L - fts weakly which are induced weakly. $f: (L^X, \delta) \to (L^Y, \mu)$ is continuously closed and full L-value Zadeh function. If (L^X, δ) is a countable paracompact level normal space, (L^Y, μ) is a countable paracompact level normal space.

Proof Because (L^X, δ) is a weakly induced space, from theory 2.5 $(X, [\delta])$ is a countable paracompact space. By $[6](X, [\delta])$ is a level normal space. Because $f: (L^X, \delta) \to (L^Y, \mu)$ is continuously closed and full L-value Zadeh function, general mapping $f: (X, [\delta]) \to (Y, [\mu])$ is continuous closed full mapping. From some results of general topology $(Y, [\mu])$ is countable paracompact level normal space. It is provedby theory 2.5 (L^Y, μ) is a countable paracompact level normal space.

Reference:

- [1] Maokang Luo. Paracompactness in fuzzy topological spaces.J.Math.Anal.Appl,1988,130(55-57)
- [2] Maokang Luo. Paracompactness and compactness in L fuzzy topological spaces Mathematics Magazi-

ne,1987,30:548-552

- [3] Jiulun Fan. Paracompactness and strong paracompactness in L fuzzy topological spaces. Fuzzy Sets and Systems. 1990,1:88-94
- [4] Guangwu Meng. Level paracompact set in L fuzzy topological spaces. Fuzzy Sets and Systems, 1995, 2:45-50
- [5] Yuxiang Chen. Paracompactness on L fuzzy topological spaces. Fuzzy Sets and Systems, 1993, 53: 335-342
- [6] Fugui Shi and Chongyou Zheng. A new type of strong $\,F\,$ paracompactness on $\,L\,$ – fuzzy topological spaces. Fuzzy Sets and Systems, 1995, 3:40-48
- [7] Guojun Wang. L fuzzy topological spaces. The Publishing House of Shanxi Normal University, Xian, 1988.
- [8] R. Engelking. General Topology. Warszawa, 1977
- [9] JUN-ITI NAGATA. Modern General Topology, North-Holland, 1985