Some Results On BZMV dM - algebras

Wu DuoYi

(Dept.of Mathematics, FoShan College of Education, FoShan, Guangdong, 528000, China)

Abstract: A BZMV dM - alegbra is a system endowed with a commutative and associative binary operator \oplus and two unusual orthocomplementation: a kleen orthocomplementation \neg and a Brouwerian one \sim , and every BZMV dM - algebra is both an MV- algebra and a distributive de-Morgan BZ-lattice. Our main results is that the following properties hold, for any

BZMV ^{dM} -algebra
$$(A, \oplus, \neg, \sim, 0), \forall x, y \in A, (1) \sim x = x \text{ iff } \sim x \otimes x = x \text{ iff } x \oplus x = x, (2)$$

 $x \wedge y = 0 \text{ iff } x \leq \neg y, (3) \sim (x \oplus y) = \sim x \otimes \sim y, (4)x \oplus \sim x = 1.$

 $\textbf{Keywords:} BZMV^{dM}$ -algebra; Kleen orthocomplementation; Brouwerian orthocomplementation.

In 1997,G.cattaneo, R. giuntini and R. Pilla presented the concept of BZMV dM - algebras $^{[1]}$. The main properties of this system is studied, from [1], any BZMV dM - algebras are the same as the Stonian MV- algebras and a first representation theorem is proved.

The aim of this paper is to make further investigation of the features of BZMV dM - algrbras.

1. Preliminaries

Definition 1.1 [1] A BZMV dM - algebra is a system $< A, \oplus, \neg, \sim, 0>$ where A is a non-empty set of elements, 0 is a constant element of A, \neg and \sim are unary operations on A, \oplus is a binary operation on A, obeying the following axioms:

(MB₁)
$$(x \oplus y) \oplus z = (y \oplus z) \oplus x$$
,

$$(MB_2)$$
 $x \oplus 0 = x$

$$(MB_3) \quad \neg(\neg x) = x$$

$$(MB_4)$$
 $\neg(\neg x \oplus y) \oplus y = \neg(x \oplus \neg y) \oplus x$,

$$(MB_5) \sim x \oplus \sim x = \sim x$$

$$(MB_6)$$
 $x \oplus \sim x = \sim x$

$$(\mathsf{MB}_{7}) \sim \neg [\neg (x \oplus \neg y) \oplus \neg y] = \neg (\sim x \oplus \neg \sim y) \oplus \neg \sim y.$$

/

From [1], making use of BZMV dM - algebra structure, we can define some new operations:

$$1 := \neg 0, \tag{1}$$

$$x \otimes y := \neg(\neg x \oplus \neg y), \tag{2}$$

$$x \vee y := (x \otimes \neg y) \oplus y = \neg(\neg x \oplus y) \oplus y, \tag{3}$$

$$x \wedge y := (x \oplus \neg y) \otimes y = \neg [\neg (x \oplus \neg y) \oplus \neg y]. \tag{4}$$

Theorem1.2 [1] If A is a BZMV dM - algebra, then the following results are true:

$$(5) x \oplus y = y \oplus x,$$

(6)
$$(x \oplus y) \oplus z = x \oplus (y \oplus z),$$

$$(7) x \oplus 1 = 1,$$

(8)
$$x \oplus \neg x = 1$$
,

(9)
$$\neg (x \oplus \sim x) \oplus \sim x = 1$$
,

(10)
$$\neg x \oplus \sim x = 1$$
,

(11)
$$x \wedge \sim x = x$$
,

$$(12) \qquad \sim (x \wedge y) = \sim x \vee \sim y,$$

$$(13) \quad \sim (x \vee y) = \sim x \wedge \sim y, (i.e., x \leq y \Rightarrow \sim y \leq \sim x,)$$

$$(14) x \wedge \sim x = 0,$$

$$(15) \qquad \sim x = \sim x,$$

$$(16) \qquad \sim x \oplus \sim x = \sim x,$$

$$(17) \qquad \neg 0 = \sim 0.$$

2. Some Results

Theorem 2.1 Let A be a BZMV dM -algebra, then we have

(18)
$$\forall x, y \in A, x \land y = 0 \text{ iff } y < x$$

(19) for x , and
$$x \oplus x = x$$
 , then $\forall y \in A$, $x \land y = 0$ iff $x \le \neg y$

Proof. (18) Assume
$$x \wedge y = 0$$
, then $y \wedge \sim x = (y \wedge \sim x) \vee 0 = (y \wedge \sim x) \vee (y \wedge \sim y)$
= $(\sim (x \wedge y)) = y \wedge \sim 0 = y$.

Conversely, suppose $y \le \sim x$, then trivially

$$x \wedge y = x \wedge (y \wedge \sim x) = y \wedge (x \wedge \sim x) = y \wedge 0 = 0.$$

(19) Suppose $x = x \oplus x$, and, by (1) of proposition 2.2 of [1], $x \otimes y = x \wedge y$, hence, $x \leq \neg y$ iff $x \wedge y = 0$.

Theorem 2.2 Let A be a BZMV dM -algebra, then $\forall x, y \in A$, we have

$$\sim (x \oplus y) = \sim x \otimes \sim y$$

Proof. By theorem 1.2, we have $(x \oplus y) \land \neg (x \oplus y) = 0$, and $\neg (x \oplus y) \le \neg x \otimes \neg y$.

By
$$x \oplus y = x \oplus y$$
, hence $(x \oplus y) = (x \oplus y)$. That is

$$\sim (\sim x \oplus \sim y) = (\sim x \oplus \sim y) = \neg (\neg \sim x \oplus \neg \sim y) = \sim x \otimes \sim y$$
.

Theorem 2.3 Let A be a BZMV dM -algebra, then $\forall x \in A$, we have

$$x \oplus \sim x = 1$$

Proof. Since $\sim (x \oplus \sim x) = \sim x \otimes \sim x = \neg (\neg \sim x \oplus \neg \sim x) = \neg (\neg \sim x \oplus \neg \neg \sim x)$. By (8) of theorem 1.2, we have $\neg (\neg \sim x \oplus \neg \neg \sim x) = \neg 1 = 0.5$, $x \oplus \sim x = 1$.

Definition 2.4 Let A be a BZMV dM -algebra, then $\forall x, y \in A$, we introduce the following new operation " \rightarrow ":

$$x \rightarrow y = \neg x \oplus y$$

Theorem 2.5 Let A be a BZMV dM -algebra, then $\forall x, y, z \in A$, the following holds:

$$(20) x \to (y \to z) = y \to (x \to z),$$

$$(21) x \rightarrow y = \neg y \rightarrow \neg x,$$

$$(22)(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$$

(23)
$$x \to x = 1$$
.

Proof. (20) $x \to (y \to z) = \neg x \oplus (y \to z) = \neg x \oplus (\neg y \oplus z) = (\neg x \oplus \neg y) \oplus z$

$$= (\neg y \oplus \neg x) \oplus z = \neg y \oplus (\neg x \oplus z) = \neg y \oplus (x \to z)$$
$$= y \to (x \to z).$$

$$(21) \quad x \to y = \neg x \oplus y = y \oplus \neg x = \neg (\neg y) \oplus \neg x = \neg y \to \neg x.$$

$$(22) \quad (x \to y) \to y = \neg (x \to y) \oplus y = \neg (\neg x \oplus y) \oplus y = \neg (x \oplus \neg y) \oplus x$$
$$= \neg (\neg y \oplus x) \oplus x = (\neg y \oplus x) \to x = (y \to x) \to x.$$

(23)
$$x \rightarrow x = \neg x \oplus x = 1$$

In any BZMV dM - algebra the elements which are idempotent with respect to the operation \oplus ,

the condition leads to the following:

Theorem 2.6 Let A be a BZMV dM -algebra, then $\forall x, y, z \in A$, the following holds:

(24)
$$x \rightarrow (y \oplus z) = (x \rightarrow y) \oplus (x \rightarrow z)$$

$$(25) \neg x \rightarrow x = x.$$

Proof. (24) Since $(x \to y) \oplus (x \to z) = (\neg x \oplus y) \oplus (\neg x \oplus z)$

$$= (\neg x \oplus \neg x) \oplus (y \oplus z) = \neg x \oplus (y \oplus z) = x \rightarrow (y \oplus z).$$

$$(25) \neg x \rightarrow x = \neg \neg x \oplus x = x \oplus x = x.$$

Let us introduce the following order relation "≤":

$$x \le y$$
 iff $x \to y = 1$ iff $\neg x \oplus y = 1$

Theorem 2.7 Let A be a BZMV dM -algebra, then $\forall x, y, z \in A$, the following holds:

(i) if
$$x \le y$$
, then $y \to z \le x \to z$,

(ii) if
$$x \le y$$
, then $\neg y \oplus z \le \neg x \oplus z$.

Proof. (i) Since
$$(y \to z) \to (x \to z) = x \to ((y \to z) \to z) = x \to ((z \to y) \to y)$$

$$= (z \rightarrow y) \rightarrow (x \rightarrow y) = (z \rightarrow y) \rightarrow 1 = \neg(z \rightarrow y) \oplus \neg 0 = \neg 0 = 1,$$

so,
$$y \rightarrow z \le x \rightarrow z$$
.

(ii) Since
$$(\neg y \oplus z) \rightarrow (\neg x \oplus z) = (y \rightarrow z) \rightarrow (x \rightarrow z) = x \rightarrow ((y \rightarrow z) \rightarrow z) = 1$$
,

hence $\neg y \oplus z \leq \neg x \oplus z$.

References

- [1] G.CATTANEO, R.GIUNTINI, R.PILLA., BZMV ^{dM} -algebras and stonian MV -algebras[J]. Fuzzy sets and systems 1999,108:201-222.
- [2] HANAMANTAGOVDA, P.SANKAPPANAVAR. Semi-DE Morgan algebras[J]. The Journal of Symbolic logic. 1987, 52(3):140-147.
- [3] L.P.BELLUCE. Semi-simple and complete MV-algebras [J]. Algebra universalis,1992,29:1-9.