Some Properties of Complete Lattice

Yu Dong Zhang Qiang (Dalian Maritime University, Dalian, 116026, China)

Abstract: In this paper, properties of the subset of complete lattice, complemented lattice, complete complemented lattice had been discussed.

Keyword: complete lattice, complemented lattice.

1.Preliminares

Definition 1.1: $(L, \land, \lor, ')$ is called a complemented lattice if

- (1) (L, \land, \lor) is a lattice;
- (2) ':L \rightarrow L is a inverted sequence convolution mapping, i.e. for any $a, b \in$ L

①
$$a \le b \Rightarrow b' \le a'$$
; ② $(a')' = a$.

Definition 1.2: (L, \wedge, \vee) is called a complete lattice if

- (1) (L, \land, \lor) is a lattice;
- (2) for any subset A of L, supA and infA exist.

Theorem 1.1 Let L be a complemented lattice with universal bound, then in L, generalized De Morgan's rules hold:

$$\left(\bigvee_{\alpha\in I}a_{\alpha}\right)'=\bigwedge_{\alpha\in I}a_{\alpha}' \qquad \left(\bigwedge_{\alpha\in I}a_{\alpha}\right)'=\bigvee_{\alpha\in I}a_{\alpha}'$$

2. Properties

Definition 2.1: Let L be a complete lattice. $E \subseteq L$, $E \neq \emptyset$. E is called a zone of L if the following conditions are satisfied.

- (1) $\forall a_{\alpha} \in E \ (\alpha \in I)$, we have $\bigvee_{\alpha \in I} a_{\alpha} \in E$;
- (2) $a \le b$ and $b \in E \Rightarrow a \in E$.

Dually, E is called a dual zone of L if the following conditions are satisfied.

- (1) $\forall a_{\alpha} \in E \ (\alpha \in I)$, we have $\bigwedge_{\alpha \in I} a_{\alpha} \in E$;
- (2) $a \ge b$ and $b \in E \Rightarrow a \in E$.

Obviously, if E is a zone (dual zone) of L, then

(1) $O \in E(\text{or } I \in E)$; (2) E is a closed sublattice of L.

According to Definition 2.1, we regard the concept of zone (deal zone) as the generalization of the concept of ideal (dual ideal).

Theorem 2.1 Let L be a complete lattice. E be a non-empty subset of L. Then

(1) E is a zone (dual zone) of L if and only if E satisfied the condition:

$$\bigvee_{\alpha \in I} a_{\alpha} \in E \left(\bigwedge_{\alpha \in I} a_{\alpha} \in E \right) \Leftrightarrow \forall \alpha \in I, a_{\alpha} \in E.$$

E is a zone (dual zone) of L if and only if E is a closed sublattice of L, and E satisfies the condition:

$$(2) \ \forall \ a_{\alpha} \in E \ , b_{\beta} \in L(\alpha \in I, \beta \in T) \Longrightarrow (\bigwedge_{\alpha \in I} a_{\alpha}) \land (\bigwedge_{\beta \in T} b_{\beta}) \in E \ ((\bigwedge_{\alpha \in I} a_{\alpha}) \lor (\bigwedge_{\beta \in T} b_{\beta}) \in E).$$

Theorem 2.2 Let L be a complete complemented lattice, $E \subseteq L$ and $\forall a \in L$, There is only one for a and a' belongs to E, then

- (1) E is a closed sublattice of L if and only if L-E is a closed sublattice of L;
- (2) E is a zone of L if and only if L-E is a dual zone of L;
- (3) E is a dual zone if and only if E satisfies the condition: $\bigvee_{\alpha \in I} a_{\alpha} \in E \Leftrightarrow \exists \beta \in I, a_{\beta} \in E.$ (1)

Proof:

(1) Clearly, E is a sublattice of L if and only if L-E is a sublattice of L. Suppose E be a closed sublattice of L, we consider any nonempty subset T of L-E. Since $T \subseteq L - E$, so $\forall a \in T$, we have $a' \in E$. Thus, by Theorem 1.1

$$\bigvee_{\alpha \in I} a_{\alpha} = (\bigwedge_{\alpha \in I} a_{\alpha}^{1})' \in L - E \qquad \qquad \bigwedge_{\alpha \in I} a_{\alpha} = (\bigvee_{\alpha \in I} a_{\alpha}^{1})' \in L - E$$

Therefore, L-E is a closed sublattice. Sufficiency is proved as above.

- (2) Let E be a zone of L. If $a \ge b$ and $b \in L E$, the $a' \le b'$ and $b' \in E$. Since E is a zone of L, we have $a' \in E$, i.e. $a \in L - E$. Also, $\forall a_{\alpha} \in L - E$ ($\alpha \in I$), we have $a'_{\alpha} \in E$. So $\bigvee_{\alpha \in I} a_{\alpha} = (\bigvee_{\alpha \in I} a_{\alpha}) \in E$. Therefore, L-E is a dual zone of L.
 - (3) Suppose E, If $a \in I$, $a_{\alpha} \notin E$, then $a_{\alpha}' \in E$ ($\forall \alpha \in I$).

Since E is a dual zone of L, $\bigvee_{\alpha \in I} a_{\alpha}' \in E$, Thus $\bigwedge_{\alpha \in I} a_{\alpha} = (\bigvee_{\alpha \in I} a_{\alpha}')' \notin E$. This is a contradiction. So

there exists $\beta \in I$, such that $a_{\beta} \in E$. If $\bigvee_{\alpha \in I} a_{\alpha} \notin E$ $\bigwedge_{\alpha \in I} a_{\alpha}' = (\bigvee_{\alpha \in I} a_{\alpha})' \in E$.

Since E is a dual zone of L, by Theorem 2.1(1): $\forall a \in I$, $a_{\alpha}' \in E$, i.e. $a_{\alpha} \notin E$, This is a contradiction with " $\exists \beta \in I$, such that $a_{\beta} \in E$ ", thus $\bigvee_{\alpha \in I} a_{\alpha} \in E$.

To sum up, when E is a dual zone of L, (1) holds.

Necessity:

If $\exists \beta \in I$, such that $a_{\beta} \notin E$, i.e. $a_{\beta}' \in E$. By (1) we have $\bigvee_{\alpha \in I} a_{\alpha}' \in E$, that is $\bigwedge_{\alpha \in I} a_{\alpha} = (\bigvee_{\alpha \in I} a_{\alpha}')' \notin E$. This

contradict with
$$\bigwedge_{\alpha \in I} a_{\alpha} \in E$$
. So $\bigwedge_{\alpha \in I} a_{\alpha} \in E \Rightarrow \forall \alpha \in I, a_{\alpha} \in E$. (2)

Conversely, suppose $\forall \alpha \in I$, $a_{\alpha} \in E$, if $\bigwedge_{\alpha \in I} a_{\alpha} \notin E$, then $\bigvee_{\alpha \in I} a_{\alpha}' = (\bigwedge_{\alpha \in I} a_{\alpha})' \in E$. By (1), $\exists \beta \in I$, such that $a_{\beta}' \in E$, i.e. $a_{\beta} \notin E$. This is a contradiction with " $\forall \alpha \in I$, $a_{\alpha} \in E$ ". Thus

$$\forall \alpha \in \mathbf{I}, \, a_{\alpha} \in \mathbf{E} \Rightarrow \bigwedge_{\alpha \in I} a_{\alpha} \in \mathbf{E} \tag{3}$$

By (2), (3) and Theorem 2.1(1), we have the result that E is a dual zone of L.

Corollary 2.1 Let L be a complemented lattice, $E \subseteq L$ and $\forall \alpha \in I$, there is only one for a and a' belongs to E. Then: (1) E is a sublattice of L if and only if L-E is a sublattice of L.

- (2)E is an ideal of L if and only if L-E is a dual ideal of L.
- (3) E is a dual ideal if and only if E satisfies the condition: $a \lor b \in E \Leftrightarrow a \in E$ or $b \in E$.

References

- [1] Brikhoff G. Lattice Theory 3rd ed., New York, American Math Society, 1967,78.
- [2] Xu yang. Complemented Lattice, Journal of Southwest Jiaotong University, No.1,1992.