Optimisation of trapezoidal membership functions in a fuzzy rule
system by the “bacterial algorithm” approach*

Janos Botzheim, Botond Hamori, Laszl6 T. Koczy, Budapest University of
Technology and Economics
Department of Telecommunications and Telematics'

Abstract - This paper presents a method of using the so-called “bacterial
algorithm” [4, S] for extracting the rules of a fuzzy system. The class of
membership functions is restricted to trapezoidal, as it is general enough and
widely used. The algorithm contains the bacterial mutation step allowing both
the change of more than one membership function at one time, and the fine-
tuning. Further operators are applied for optimising the number of rules in the
base, eliminating ineffective rules and contract similar rules into a single one.

Index Terms - Bacterial algorithm, fuzzy system, hybrid system, membership
functions

I. Introduction

In the applications of fuzzy systems [1] one of the most important task is to find the
optimal rule base. This might be given by a human expert or might be given a priori by
the linguistic description of the modelled system. If however neither an expert, nor a
linguistic description are available, the system has to be designed by other methods
based on numerical data [5]. Nature inspired some evolutionary optimisation
algorithms suitable for global optimisation of even non-linear, high-dimensional,
multimodal, and discontinuous problems. The original genetic algorithm (GA) was
developed by Holland {2] and was based on the process of evolution of biological
organisms. GA-s use three well-known operators: reproduction, crossover, and
mutation. Closely related evolutionary programming (EP) was proposed by Fogel [3].
EP uses selection and mutation operators. A more recent approach is the bacterial
algorithm. This includes a modified mutation operator called bacterial mutation,
emulating a biological phenomenon of microbial evolution. This gives an alternative by
other algorithms, because it is simpler, and it is possible to reach lower error within a
short time. In Section II the bacterial algorithm for trapezoidal fuzzy systems is
described. Simulation results are in Section III. Section IV concludes the paper.

II. Fuzzy rule base identification by bacterial algorithm

The algorithm is similar to that used in [4]. The main difference is that trapezoidal
membership functions are used. They are described by four parameters with the four
breakpoints of the trapezium. Moreover the membership functions are identified by the
two indices / and j. So, the membership function A;(a;by,c;d;) belongs to the i™ rule

* Supported by the National Science Research Fund (OTKA), Grant nos. T034233 and T034212.

and the ™ input variable. Bi(a; b, c,d)) is the output membership function of the i rule.
The relative importance of the j* fuzzy variable in the i* rule:

(x,—a,
J Vi :

PR if a; <x; <b;

A.(x)___< L ifb;<x; <c;

i J .

7 o ifc; <x,<d;
i ~Cy ’

. 0, otherwise

where a;<b;<c;<d; must hold.

So the encoding method of a fuzzy system with two inputs and one output, see in Fig.
1.

Rulel1 |Rule2 |Rule3 (Ruled4 | Rulen
K= 0= |61= |37 [a3F [057 |57 [d=[25= [P35= [c3=[d5=
43151 154 163 1.2 [1.3 |27 3.1 |26 138 |4.1 |44

As) Az B3

Fig. 1. Fuzzy rules encoded in a chromosome

For example, Rule 3 in Fig. 1 means:

if x; is A31(43,51,54,63) and x, is A32(1.2,].3,2.7,3.]) then y is
B3(2.6,3.8,4.1,4.4)

where 4;; and B; mean the trapezoidal membership function with the four breakpoints.
The algorithm is described as follows [4, 5]

A. Generating the initial bacterium:

First the initial (random) bacterium is created. This means that all membership
functions in the chromosome must be randomly initialised. The initial number of rules
iS Npax. S0, in this step (k+1)Np.: membership functions are created (k is the number of
input variables in the given problem, and each membership function has four
parameters).

B. Bacterial mutation :

After the initialisation process the algorithm goes through several cyclic steps. First,
m —1copies (clones) of the rule base are generated [4]. Then a certain part of the
chromosome [5] is randomly selected and the parameters of this selected part are
randomly changed in each clone (mutation). Next all the clones and the original
bacterium are evaluated by the error criterion. The best individual transfers the

mutated part into the other individuals. This cycle is repeated for the remaining parts,
until all parts of the chromosome have been mutated and tested. At the end the best
rule base is kept and the remaining m -1 are discharged. The above procedure is
repeated once more, however, with different parameters [4]. It is an important
question how long is one part suffering mutation and what is the degree of the
mutation (expressed as the relative size in terms of the interval). This approach allows
both selecting more than one membership function and fine-tuning. The number of
mutated membership functions and the mutation degree are external parameters of the
bacterial mutation. If selecting more than one membership function is allowed then the
local minima in the optimisation process can be avoided. Application of changing two
or more membership functions at a time with fine-tuning in the first bacterial mutation
and in the second step changing one membership function in the whole interval of the
given variable was proposed in [4].

C. Fuzzy operators :

Bacterial mutation optimises the membership functions in the rule base. Besides, it is
important to optimise the structure of the rule base. Ineffective rules must be
eliminated and similar rules must be contracted. The following operators help to
optimise the number of rules:

1. Annihilation

When a membership function becomes too narrow the rule using it must be deleted.
The evaluation criterion (Fig. 2) is:
a,+b;, +c, +d,
lnui 4 2 ﬂl J
where /; and /; are the lengths of the medians of the membership functions of the given

input or output variables in the i* and j* rule and B is the annihilation parameter. The

larger is the value of g, the more severe is the annihilation criterion.
1

#i® #i®

0.5

3 b ¥ 65 & 4
1

—h)
Fig. 2. Annihilation

2. Fusion

#;(®) / \ #i®
0.5 1

by b o 5 &
li

o

)
.Li

Fig. 3. Fusion

If two membership functions, belonging to the same variable are near to each other,
and the difference between the lengths of their median is small enough, then they are

fused in a single membership function. (Fig. 3.)There are two criteria of fusion,
accordingly:

;l-—l <y and |f|<y,

J

where /; and /; are the lengths of the median of the membership functions of the given
variable in the i and j" rule, and fis the distance between the centres of J; and l. To
execute fusion both criteria must be satisfied, but only one parameter, g is used. The
smaller is the value of g, the more severe is the criterion of fusion. The parameters of
the fused membership function will be:

z,.I,.+zjlj
Zg, =—,
I,.+lj

where z stands for the four breakpoints (a, b, ¢ and d) of a trapezoidal membership
function.

3. Semantic analysis

If two rules have the same antecedents but a different consequent, the membershlp
functions of the output variable are fused in one output membership function by using
the fusion described above [4].

4. Rule removal

As COG defuzzification is used, removal of a rule [4] generates large error values so it
decreases the performance of the fuzzy system. A new method is proposed here where
the importance of the remammg rule i 1s increased so it represents the two identical rules
in one. For example if the i and the i j rules are identical then the J rule is deleted and
the parameters of the new output membership function of the i rule will be calculated
as the following:

m,= 2d -2a,+c,-b
n = c’+2cd +2d’-2a’-2ab b’

. n—m’—cm, \
i 2m,+c, - b,
d'= a'+m,

where a;, b;, c; and d; are the breakpoints of the trapezoidal membership function of the
output variable and a;’ and d;’ are the new breakpoints for a; and d; . Parameters b; and
¢; remain unchanged.

D. Stop condition :

If the bacterium satisfies a stop condition or the maximum generation number is
reached then the algorithm ends, otherwise it returns to the bacterial step.

lll. Results
A. Definition of the error function :

The widely used error functions in earlier publications defining the error value are as
follows [4]:

== -5 o &=+ T3V,

n patterns n patterns
where n is the number of the evaluated patterns, y is the desired output of the
modeled system for an input pattern and y is the output of the fuzzy system for the
same input. The main problem with this formula is that it is not normalised, so the
error results cannot be compared with each other. Another formula used [5] is the
following:

1
erel =— Z

h paltterns

Y-y

~

The problem with this expression is that the error depends on the actual value of the
output in a non-normalised way. If the expected output value is smaller, the error
seems to be larger with the same difference. In our approach we introduced a different
error function in order to reach better approximation of the model:

e _1 ¥ -3 ,
R paterns I max -1 min

where Iy is the upper and I, is the lower bound of the interval of the output

variable, so the error is normalised by the length of the output interval rather than the

actual value of the output. This approach helps with keeping the accuracy of the

approximation of the patterns always constant, not being sensitive to the absolute

value of the desired output. At the same time it has the advantage of being a

normalised value keeping the error within [0,1].

B. Simulation Results :

1. Target function:

To test the algorithm, the following widely used target function [4, 5] was chosen:
y=x+x," +xx, +2*5

where

x, €[1,5],x, €[1,5],x, €[0,4],x, €[0,0.6], x; €[0,1], x, €[0.0,1.2].

The training set included 200, the validation set 500 patterns. The algorithm was
running for 40 generations with 2 different bacterial operations in each and using 20

clones. Next we summarise some of the interesting points.

2. Number of changing membership functions :

It is possible that the optimisation procedure is trapped in a local optimum and further
optimisation becomes impossible when only one membership function is modified in
each generation in a rule. This way more than one membership functions have to be
changed, as it was experienced through the previous approximation tests. In this
method the number of membership functions to change is fixed. Every membership
function is allowed to change in one generation. During our tests with the six input
variables function two or three changes turned out to be sufficient and larger numbers
of changes showed no visible effect on the result as described in Figs. 4 and 5, where
B= 5, y = 5% and the initial number of rules was 10. The values in the table are
averages of 4 results.

MF change |Rule No. Train. ermr. [%] |Test err. [%]
1 5,75 4,30425 8,38225
2 4,75 5,66925 9,02325
3 6 4,8755 8,6555
4 4 6,6995 8,78875
5 3,75 6,13475 9,2765
6 4,75 5,646 8,366
7 5,75 5,948 9,28875

Fig. 4

10

i —&—Rule No.
—-—Train. err. [%]
i =i Test orr. (%)

MFs to change

o N A~ O O®

1 2 3 4 5 8 7

Fig. 5

We found that if the number of membership functions to be changed was increased, the
approximation accuracy of the above mentioned benchmark function was not affected
significantly, presumably because of the high complexity of the problem.

3. Fine-tuning:

In our tests fine-tuning the membership functions was included and we found that if a
membership function remained in the rule base it meant generally that it was important
for the fuzzy system even if it might not be optimal. It was possible to improve the
accuracy of a fuzzy system by changing the breakpoints of the trapeziums by small
random values.

4. Reducing complexity of a fuzzy system:

The use of the operations fusion, annihilation, semantic analysis, and rule removal
proved to be an effective tool to optimise the size of fuzzy rule bases by reducing
redundancy. Several tests were taken to identify the optimal parameters to avoid
generating “too simple” rule bases and improving performance. Test results are shown
in Figs. 6 and 7 y= 5% and the initial number of rules was 10. The values in this table
are averages of 4 results.

Vi Rule No. Train. emr. [%] |Test er. [%]
5 4,75 5,66925 9,02325
6 5,75 5,24725 8,6675
7 7.5 4,78775 9,44525
8 9 4,455 9,311
9 8,75 4,55125 8,9235
10 8 4,261 9,01575

Fig. 6

R PR R S

1 o RN e :
6 | —&— Rule No.
4 ~4— Train. err. [%)
2= Test efr. [%]
2
0 T r r r '
5 6 7 8 9 10 B
Fig. 7

With the increase of the value of £ the remaining rule number increased too, because
the criteria of annihilation got more severe. As the rule number in the resulting base
increased, the error measured during the training phase decreased however the error
measured with the validation set did not. We interpreted it that the resulting large rule
base was too specific for the training set and had no advantage when applied for an
independent pattern set. We concluded that it was not necessary to give S high values
as it just generated more complex rule bases with the same capability.

IV. Conclusions

In this paper a new algorithm for the optimisation of the membership functions was
shown. We intended not only to optimise the rules but also to reduce the size of the
rule base. With trapezoidal membership functions the problem could be solved with
fewer rules than with triangular ones. By applying fuzzy operators, optimal rule base
size could be achieved.

References

[1] L.A.Zadeh: Qutline of a new approach to the analysis of complex systems and
decision processes, IEEE Tr. Systems, Man and Cybernetics 3 (1973), pp. 28-44.

[2] J. H.Holland: Adaptation in Nature and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press,
Cambridge, 1992. ‘

[3] L.J. Fogel, A.J.Owens, and M.J.Walsh: Artificial Intelligence through Simulated
Evolution, Wiley, New York, 1966.

[4] M.Salmeri, M.Re, E. Petrongari, and G.C.Cardarilli: A Novel Bacterial Algorithm
to Extract the Rule Base from a Training Set, Dept. of Electronic Engineering,
University of Rome, 1999.

[S] N.E.Nawa, and T.Furuhashi: Fuzzy System Parameters Discovery by Bacterial
Evolutionary Algorithm, JEEE Tr. Fuzzy Systems T (1999), pp. 608-616.

