Grey Congruence relations of Groups*

Qiao Bingwu¹ Wang Xinmin²

1) Department of Computer, Liaocheng Teacher's University, Liaocheng, 252059, China

2) Department of Mathematis, Weifang College, Weifang, 261043, China

Abstract: In this paper, we introduce the concepts of Congruence relation of Groups and give the important properties of it.

Keywords: Grey Set, Group, Grey Congruence relation.

Introduction

In[1], some authors studied the theorem of grey subset and grey subgroups, in[2-3], some authors studied fuzzy relations on rings and groups. In this paper, we study grey congruence relations of groups still further based on [1-3], First, we give the Definition of grey relations.

Let G be any set and L a bounded lattice with 1 and 0, then a grey relation A in G is characterized by two mapping: $\overline{U}_A: G \times G \to L$, $\underline{U}_A: G \times G \to L$ where $\overline{U}_A \ge \underline{U}_A$. The relation $A_{[\lambda_1,\lambda_2]} = \{x | x \in G, \overline{U}_A(x) \ge \lambda_2, \underline{U}_A \ge \lambda_1\}$ is called a $[\lambda_1, \lambda_2]$ —level relation of grey relation A.

Grey Congruence relations of Group

Definition 1. The grey relation A of G is called a grey congruence relation if we have

- (1) For any $x \in G$, $\overline{U}_A(x,x) = \underline{U}_A(x,x) = 1$;
- (2) For any $x, y \in G$, $\overline{U}_A(x, y) = \overline{U}_A(y, x), \underline{U}_A(x, y) = \underline{U}_A(y, x)$;
- (3) $\overline{U}_{A} \bullet \overline{U}_{A} \subseteq \overline{U}_{A}, \underline{U}_{A} \bullet \underline{U}_{A} \subseteq \underline{U}_{A};$
- (4) For any $x, y, z \in G$, $\overline{U}_A(xz, yz) \ge \overline{U}_A(x, y)$, $\overline{U}_A(zx, zy) \ge \overline{U}_A(x, y)$, $\underline{U}_{A}(xz,yz) \ge \underline{U}_{A}(x,y), \underline{U}_{A}(zx,zy) \ge \underline{U}_{A}(x,y).$

A is called a grey equivalence relation if A satisfy (1), (2) and (3) of Definition 1.

Theorem 1. Let A be grey relation of G, then A is a grey congruence relation of G if for any $[\lambda_1 \lambda_2], \in L, A_{[\lambda_1, \lambda_2]}$ be congruence relation of G.

Proof: Necessity: Because A is a grey congruence relation of G, then $A_{[\lambda_1,\lambda_2]}$ is easily established to be equivalence relation by (1), (2)and(3) of Definition 1. For any $x, y \in G$, if $x \equiv y (A_{[\lambda_1,\lambda_2]})$, then $(x,y) \in A_{[\lambda_1,\lambda_2]}$, so for any $z \in G$, By (4) of Definition 1, we have

$$\overline{U}_{A}(xz,yz) \geq \overline{U}_{A}(x,y) \geq \lambda_{2},$$

$$\overline{U}_{A}(zx,zy) \geq \overline{U}_{A}(x,y) \geq \lambda_{2},$$

$$\underline{U}_{A}(xz,yz) \geq \underline{U}_{A}(x,y) \geq \lambda_{1},$$

$$\underline{U}_{A}(zx,zy) \geq \underline{U}_{A}(x,y) \geq \lambda_{1},$$

That is (xz, yz), $(zx, zy) \in A_{[\lambda_1, \lambda_2]}$, and $xz = yz (A_{[\lambda_1, \lambda_2]})$, $zx = zy (A_{[\lambda_1, \lambda_2]})$,

So $A_{[\lambda_1,\lambda_2]}$ is congruence relation of G.

Sufficiency: For any $[\lambda_1, \lambda_2] \in L$, $A_{[\lambda_1, \lambda_2]}$ is congruence relation of G, then A is easily

^{*} It is imbursed by Shan Dong Natural Science Fund.

established to be grey equivalence relation. Because $A_{[\lambda_1,\lambda_2]}$ is congruence relation of G, for any $x,y,z\in G$, we have,

$$\overline{U}_{A_{1}}(xz,yz) \geq \overline{U}_{A_{1}}(x,y),
\overline{U}_{A_{1}}(zx,zy) \geq \overline{U}_{A_{1}}(x,y),$$

there into
$$\overline{U}_{A_{\lambda_2}}(x,y) = \begin{cases} 1, & \text{if } (x,y) \in A_{\lambda_2} \\ 0, & \text{if } (x,y) \notin A_{\lambda_2} \end{cases}$$

So we have $\overline{U}_{A}(xz,yz) = \sup_{\lambda_{2} \in L} \lambda_{2} \overline{U}_{A\lambda_{2}}(xz,yz) \ge \sup_{\lambda_{2} \in L} \lambda_{2} \overline{U}_{A\lambda_{2}}(x,y) = \overline{U}_{A}(x,y),$

Similarly, we have $\overline{U}_{A}(zx, zy) \ge \overline{U}_{A}(x, y)$,

$$\underline{U}_{A}(xz,yz)\geq\underline{U}_{A}(x,y),$$

$$\underline{U}_{A}(zx,zy) \ge \underline{U}_{A}(x,y).$$

Then A is a grey congruence relation of G.

Definition 2. Let G be a group, A and B be grey relations of G, define grey relation of $G: A \cap B$, by:

(1)
$$\overline{U}_{A \mid B}(x,y) = \min\{\overline{U}_{A}(x,z), \overline{U}_{B}(z,x)\}, \underline{U}_{A \mid B}(x,y) = \min\{\underline{U}_{A}(x,z), \underline{U}_{B}(z,x)\};$$

(2)
$$\overline{U}_{A \cdot B}(x,y) = \sup_{z \in G} (\min(\overline{U}_{A}(x,z), \overline{U}_{B}(z,x)), \underline{U}_{A \cdot B}(x,y) = \sup_{z \in G} (\min(\underline{U}_{A}(x,z), \underline{U}_{B}(z,x));$$

respectively.

Theorem 2. Let A and B be grey congruence relations of G, then $A \cdot B = B \cdot A$. **Proof:** For any $x, y \in G$.

$$\overline{U}_{A \cdot B} (x,y) = \sup_{z \in G} (\min(\overline{U}_{A} (x,z), \overline{U}_{B}(z,y)))$$

$$\leq \sup_{z \in G} (\min(\overline{U}_{A} (yz^{-1}x, yz^{-1}z), \overline{U}_{B} (zz^{-1}x, yz^{-1}x)))$$

$$= \sup_{z \in G} (\min(\overline{U}_{B} (x, yz^{-1}x), \overline{U}_{A} (yz^{-1}x,y))) = \overline{U}_{B \cdot A} (x,y)$$

That is $\overline{U}_{A \cdot B} \subseteq \overline{U}_{B \cdot A}$.

Similarly, we have

$$\overline{U}_{B \cdot A} \subseteq \overline{U}_{A \cdot B}$$
, that is $\overline{U}_{A \cdot B} = \overline{U}_{B \cdot A}$.

Similarly, we have

$$\underline{U}_{A \bullet B} = \underline{U}_{B \bullet A}$$
, then $A \bullet B = B \bullet A$.

Theorem 3 Let A and B be grey congruence relations of G, then $A \cdot B$ is a grey congruence relation of G.

Proof: (1) Because A and B be grey congruence relations of G, then for any $x, y \in G$, we have

$$\overline{U}_{A \bullet B} (x,x) = \sup_{z \in G} (\min(\overline{U}_{A}(x,z), \overline{U}_{B}(z,x)) \ge \min(\overline{U}_{A}(x,x), \overline{U}_{B}(x,x)) = 1,$$

$$\underline{U}_{A \bullet B}(x,x) = \sup_{z \in G} (\min(\underline{U}_{A}(x,z), \underline{U}_{B}(z,x)) \ge \min(\underline{U}_{A}(x,x), \underline{U}_{B}(x,x)) = 1,$$

then
$$\overline{U}_{A \cdot B} (x,x) = \underline{U}_{A \cdot B} (x,x) = 1$$

(2) For any $x, y \in G$, we have

$$\overline{U}_{A \cdot B} (x, y) = \sup_{z \in G} (\min(\overline{U}_{A} (x, z), \overline{U}_{B} (z, y))) = \sup_{z \in G} (\min(\overline{U}_{B} (z, y), \overline{U}_{A} (x, z)))$$

$$= \overline{U}_{B \cdot A} (y, x) = \overline{U}_{A \cdot B} (y, x).$$

Similarly, we have $\underline{U}_{A \bullet B} (x, y) = \underline{U}_{A \bullet B} (y, x)$.

(3) That is distinctness, $(\overline{U}_{A \bullet B}) \bullet (\overline{U}_{A \bullet B}) \subseteq (\overline{U}_{A \bullet B}), (\underline{U}_{A \bullet B}) \bullet (\underline{U}_{A \bullet B}) \subseteq (\underline{U}_{A \bullet B}).$

(4)
$$\overline{U}_{A \cdot B}$$
 $(xz,yz) = \sup_{g \in G} (\min(\overline{U}_{A} (xz,g), \overline{U}_{B} (g,yz)))$

$$= \sup_{g \in G} (\min(\overline{U}_{A} (xz,gz), \overline{U}_{B} (gz,yz)))$$

$$\geq \sup_{g \in G} (\min(\overline{U}_{A} (x,g), \overline{U}_{B} (g,y))) = \overline{U}_{A \cdot B} (x,y).$$

Similarly, we have $\overline{U}_{A \bullet B} (zx, zy) \ge \overline{U}_{A \bullet B} (x, y), \underline{U}_{A \bullet B} (xz, yz) \ge \underline{U}_{A \bullet B} (x, y),$ $\underline{U}_{A \bullet B} (zx, zy) \ge \underline{U}_{A \bullet B} (x, y).$

Then $A \cdot B$ is a grey congrence relation of G.

Theorem 4 Let A and B be grey congruence relations of G, then $A \ I \ B$ is a grey congruence relation of G.

Theorem 5 Let L be a complete lattice, then $\prod_{k \in I} A^{(k)}$ is a grey congrence relation of G, here $\{A^{(k)}\}_{k \in I}$ is a family of grey congrence relations of G. If I is a finite set,then for all $[\lambda_1, \lambda_2] \subseteq L$, $(\prod_{k \in I} A^{(k)})_{[\lambda_1, \lambda_2]} = \prod_{k \in I} A^{(k)}_{[\lambda_1, \lambda_2]}$.

Theorem 4 and Theorem 5 can be easily drawn.

Definition 3. Let A be a grey relation of G, for any $a \in G$, define grey relation [a]A by two mapping: $[a]\overline{U}_A: G \to L$, $[a]\underline{U}_A: G \to L$. For any $x \in G$, the set [a]A(x) = A(a, x).

Theorem 6 Let A be a grey equivalent relation of G, then for $x,y \in G$, [x]A = [y]A iff A(x,y)=1.

Proof: Necessity: $\overline{U}_{A}(x,y)=[x]\overline{U}_{A}(y)=[y]\overline{U}_{A}(y)=\overline{U}_{A}(y,y)=1$, similarly, we have $\underline{U}_{A}(x,y)=[x]\underline{U}_{A}(y)=[y]\underline{U}_{A}(y)=\underline{U}_{A}(y,y)=1$. Then A(x,y)=1. Sufficiency: For any $x,y,z\in G$.

 $[x] \ \overline{U}_A \ [z] = \overline{U}_A \ (x,z) \ge \min\{ \ \overline{U}_A \ (x,y), \ \overline{U}_A \ (y,z) \} = \min\{1, \ \overline{U}_A \ (y,z) \} = \overline{U}_A \ (y,z) = [y] \ \overline{U}_A \ (z), \text{so}$ $[x] \ \overline{U}_A \ \supseteq [y] \ \overline{U}_A \ .$ Similarly, we have $[y] \ \overline{U}_A \ \supseteq [x] \ \overline{U}_A = [y] \ \overline{U}_A \ .$ Similarly, we have $[x] \ \underline{U}_A = [y] \ \underline{U}_A \ .$ Then $[x] \ \overline{U}_A = [y] \ \overline{U}_A \ .$

Theorem 7 Let A is a grey congrence relation of G, then for any $[\lambda_1\lambda_2], \in L, ([a]A)_{[\lambda_1\lambda_2]}=[a]A_{[\lambda_1,\lambda_2]}=\{x\in G\mid x\equiv a(A_{[\lambda_1,\lambda_2]})\}.$

Proof: For any $x \in [a] \overline{U}_{A12}$, then $x \equiv a(\overline{U}_{A12})$, that is $\overline{U}_{A12}(a,x) = 1$, then $\overline{U}_A(a,x) \ge \lambda_2$, $[a] \overline{U}_A(x) \ge \lambda_2$, so $x \in ([a] \overline{U}_A)_{\lambda_2}$. Contrary for any $x \in ([a] \overline{U}_A)_{\lambda_2}$, then $[a] \overline{U}_A(x) \ge \lambda_2$, that is $\overline{U}_A(a,x) \ge \lambda_2$, so $\overline{U}_{A12}(a,x) = 1$, and we have $x \in [a] \overline{U}_{A12}$. Therefore $[a] \overline{U}_{A12} = ([a] \overline{U}_A)_{\lambda_2}$. Similarly, we have $[a] \underline{U}_{A11} = ([a] \underline{U}_A)_{\lambda_1}$. Therefore $([a] A)_{[\lambda_1,\lambda_2]} = [a] A_{[\lambda_1,\lambda_2]}$.

References

[1] Zhang Yunjie(1993). DecompositionTheorem of Grey subset and Grey subgroups. Journal of Grey system theory and practice (in chinese), 1,74~78.

[2] Malik D S, Mordeson J N (1991). Fuzzy relations on Rings and groups. Fuzzy sets and systems, 43,117~123.

[3] Zhang Guisheng(1998). Fuzzy relations on Groups and Rings. Fuzzy systems and Mathematics (in chinese), 2,14~17.