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The theoretical needs of the set-value mappings lead the birth of some mathematical structures. Prof. Li
Hongxing etd"*" first introduced the concept of HX-group which originated the study of HX-group, moreover,
some useful results are obtained. Since the operations in a HX-group is based on the operations of some elements in
the base algebra ,it is worth to study how to represent directly these operations and to judge whether a subset of the
powerset P(G) are a certain algebric structure. In this paper, the operational properties of the uniform HX-group are
discussed. By the action of the group G* on the uniform HX-group, the conditions of a nonempty subset of the

powerset P(G) to form an uniform HX-group is studied.
1. Introduction

Let G be an arbitrary group and P(G), the powerset of G.Under the subset multiplication
AB={ab | a €A bEB},

Po(G)=P(G)-{ (2} forms a semigroup which have the identity. A subgroup g of Po(G) is called a HX-group on G,
and G, the generating group of g The identity of g is denoted by E.

Let g be a HX-group on G. g is called a regular HX-group if e €E (e is the identity of G).Suppose A€ g
A’ is the inverse element of A and A™={x" | x€ A} is called the inverse set of A. g 1s called an uniform HX-
group if forall A€ g, A= A’ Let G*=U {A | A€ g}, G* is called the base elements set Let g beaHX-
group on G, we have following conclusions:
Lemma 1.1” Forany A€g, | Al =|E|.(|A]| isthe base number of A)
Lemma 12" Forany ABEg,if ANB# , then ANB | =|E|.
Lemmal.3 g isan uniform HX-group iff E is a subgroup of G.

Let Gbea groupand gan uniform HX-group on G. Here we state some results whose proof are very simple .
Proposionl.4 gisan uniform HX-group iff E’=E®.
Proposionl.5 G*<G.
Proposionl.6  Forany A€ g and a€A,aE=Ea=A ie,E is a normal subgroup of G* .
Proposionl.7 IfaE=bE,thena bEA € g.
Proposion1.8 Forany A€ g, t€E iff tA=At=A.
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Proposionl.9 Suppose that AE g ,If aE=A, then a'E=A" .
Proposion1.10 Let A€ g forany a€ Aa'A=E.
Proposionl.11 Let ABE g If AB=C, then forany a& A,we have aB=C .
Proposionl.12 LetBE g anda€A€E g, xB=aB iff xEA,
Proposionl.13 Suppose that A BE g,if ANB+# gy , then A=B .
Proposionl.14 g=G*/E.
2. The condition of a noempty subset of the powerset P(G) is an uniform HX-group
Definition2.1. Let G be a group and X a non-empty set . A action of Gonthe set X isamap from GX XtoX,
with the image of (g,x ) being denoted by g(x),which satisfies the following conditions:
(De(x)=x, foreveryx€ X,
Q)zgAx)=gi(gAx)), for every g;, g2 EGandxEX.
Let G be a group and g an uniform HX-group on G, then G*<G.ande€EE g , ltG*X g —g,
(a,A)—> a(A)=aA, then (1) eA=A, forevery A€ g ,
(2) (ab)A=a(bA), for every 8, bEG* and A€ g .
Thus the group G* acts on the HX-group g .
For every a€ G*, defining N g —» g . D{A)=aA, forall A€ G.
Since a'(aA )=a(a'A) =eA=A, 1N is a bijection from g to g HenceD€E S( g). (S(g)is the
symmetric group on g )
Since ( ab )A = a(bA) , then Qa= Db , it implies that ): G* — S(g ) ,n:a —= 10 is a homomorphism from
G*t0S(g).

Conversely, if giving a homomorphism from G* to S(g ) 0: G* —> S(g), we have a action from G* to
g by the definition: a( A )=, (A )=aA , foralla€ G* and A€ g . Hence the kemel of the homomorphism 0 ,
denoted by ker 1} , is called the kernel of the action from G* to g.

When the group G* actson the g , we define that A ~ B iff there existsa& G* such that B=aA.Then ~
is a equivalent relation on g and the equivalent class which contains A is denote G*A. And G*A={aA | a€
G*, A€ g} is called the G*-orbit of A It is obviously that

UJG*4
g= 44
A is called the fixed element of G* if G*A={ A}, and we denote the {AE g | aA=A} by F(a).
Definition2.2 The action of G* onthe g is transitive if G*A=g.

Let Stabgs A={a€ G* | aA=A}. It is clear that stabg.A is a subgroup of G*, is called the stability subgroup of
A
Lemma2.1™ |stabeA| « | G*A|=| G*|.

Lemma2.2" (Burnside's Lemma) Let t be the number of orbits of G* acts on g , then
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> F@)|
t| G*| = aes* s
Y IF(a)l
When the action of G* on g is transitive , then t =1 thus |G*| = ag*

Theorem2.1 Let G* be a subgroup of G and g an uniform HX-group of G, then
kern = E.
Proef Suppose ):G* 5. S( g ) .N: a—> D is a group homomorphism, and for every AE g ,Na(A)=aA, then for
alla€kern =1 (1 is the identity transformation), Ns(A)=1(A)=A=2A implies a EE.
Converselyn{A)~aA=A=1(A) for every a€E and A€ g , it implies that 1. =1, thusa€Ekeny Hence
kern =E.
Theorem2.2 Let G bea group and g, a noempty subset of the powerset B(G), G*=U {A | A€ g}. Then
g is an uniform HX-group on G if and only if the following conditions are satisfied:

1) G*<G;
(2) there exists E in g, such that E is a normal subgroup of G* ;
(3) the action of G* on g:(a,A) —> aA (fora€G* and A€ g) is transitive.
Proof (Necessary) Ler g be an uniform HX-group of G. By proposion 1.5, 1.6, G* is a subgroup of G and if E 1s
the identity of g, then E is a normal subgroup of G*. Foreverya€G* and A€ g, defining (a,A) —=aA then
G*actson g.

" Suppose that t is the number of orbits of G* actson g, by lemma22 , t|G*= E. e

Since g is a group,by the definition of F(a ), when a¢ E, F(a)= J and when a€E, F(a)= g, Thus
¢+ [G*l=|E|+ |F@I=1El+1gl=1G*|
Hence t=1, the action of G* on g is transitive.
(Sufficiency) Suppose that the conditions (1), (2), (3) are satisfied For every A€ g, g=G*A={aA | a€G'},

then for every BE g, there exixts a€ G* such that aA=B, it implies Al=1{B].

Since E is a normal subgroup of G*, andg=G"E={aE | aEG*}, if A€ g, then there exists a€ G* , such that
A=aE and a€ A. We have
AF=(aE)E=aE=A, EA=E(aE)~(Ea)E=(aE)E~=A..
Defining A+ B= {ablac A, beB}, is denote by AB. Since g=G*E, then A=aE, B=bE, AB=aE « bE=
a(Eb)E=(abE)E=(ab)E € g hence “ « ” is an algebric operation g, and AB= UaB = J4b
Moreover, for every AE g, A=aE, there exists a '€G* such that a'E € g Z:'IE)(aE}:: Eal?‘a)E=eE=E, A=
a'E Hence, g is aHX-groupon G.
Suppose that x € A=aF=FEa then A’=a'E, x=ta ({€E), x'=a’t" €a’E, hence APC AT
On other hand for any x €A™, x= a't = ta'=(at,”)' €A™ (where t, € E), A" € A, it implies that

A=AY, g 1s an uniform HX-group on G.
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