Semi-preseparation Axioms in fts *

Bai Shi-Zhong

Department of Mathematics Wuyi University 529020 Jiangmen, Guangdong, P.R. China

Abstract

In this paper, we introduce some new separation axioms-fuzzy semipreseparation axioms, and also establish some of their characteristic properties.

Keywords: Fuzzy topology, semi-preopen set, semi-pre-q-neighborhood, semi-preirresolute mapping, semi-pre- T_i axioms.

1 Introduction and Preliminaries

Recently, Thakur and Singh introduced fuzzy semi-preopen sets in [10]. In this paper, we follow the concept of fuzzy semi-preopen set, with the help of fuzzy semi-pre-p-neighborhoods [10], to introduce fuzzy semi-preirresolute mapping and fuzzy semi-preseparation axioms and establish some of their characteristic properties.

In this paper, by X and Y we mean fuzzy topological spaces(fts, for short). For two fuzzy sets A and B in X, we write AqB to mean that A is quasi-coincident with B, i.e., there is at least one point $x \in X$ such that A(x) + B(x) > 1. Negation of such a statement is denoted as $A \not AB.B$ is said to be a quasi-neighbourhood of A iff there exists a fuzzy open set U such that $AqU \leq B[8]$. The constant fuzzy sets taking on the values 0 and 1 on X are designated by 0_X and 1_X respectively. For a fuzzy set A in X, the notations A^o, A^-, A' and suppA will respectively stand for the interior, closure, complement and support of A. A fuzzy set A in X is said to be (1) fuzzy semi-preopen if there is a fuzzy preopen set B such that $B \leq A \leq B^-$; (2) fuzzy semi-preclosed if there is a fuzzy preclosed set B such that $B^o \leq A \leq B[10]$. The family of fuzzy semi-preopen (resp. semi-preclosed) sets of a fts X will be denoted by $\psi(X)(resp.\psi'(X))$. Let A be a fuzzy set in X. Then $A^{\square} = \bigcup \{B: B \leq A, B \in \psi(X)\}$ and $A^{\cap} = \bigcap \{B: A \leq B, B \in \psi'(X)\}$ are called

^{*}Project supported by the National Natural Science Foundation of China

the semi-preinterior and semi-preclosure of A, respectively. A fuzzy set A is called a fuzzy semi-preneighborhood of a fuzzy point x_{α} in X if there exists a $B \in \psi(X)$ such that $x_{\alpha} \in B \leq A$. A fuzzy set A is called a fuzzy semi-pre-q-neighborhood of a fuzzy point x_{α} in X if there exists a $B \in \psi(X)$ such that $x_{\alpha}qB \leq A[10]$. The set of all semi-preneighborhoods(semi-pre-q-neighborhoods) of x_{α} is denoted by $\xi(x_{\alpha})(\eta(x_{\alpha}))$.

We easily prove that $A^{\square'} = A'^{\cap}$ and $A^{\cap'} = A'^{\square}$ for a fuzzy set A in X.

2 Fuzzy Semi-preirresolute Mappings

Definition 2.1. A mapping $f: X \to Y$ is called fuzzy semi-preirresolute if $f^{-1}(B) \in \psi(X)$ for each $B \in \psi(Y)$.

Theorem 2.2. For a mapping $f: X \to Y$ the following are equivalent:

- (1) f is fuzzy semi-preirresolute.
- (2) $f^{-1}(B) \in \psi'(X)$ for each $B \in \psi'(Y)$.
- (3) $f(A^{\frown}) \leq (f(A))^{\frown}$ for each fuzzy set A in X.
- (4) $(f^{-1}(B))^{\frown} \leq f^{-1}(B^{\frown})$ for each fuzzy set B in Y.
- (5) $f^{-1}(B^{\square}) \leq (f^{-1}(B))^{\square}$ for each fuzzy set B in Y.
- (6) For each fuzzy point x_{α} in X and each $V \in \psi(Y)$ with $f(x_{\alpha}) \in V$, there exists a $U \in \psi(X)$ such that $x_{\alpha} \in U$ and $f(U) \leq V$.
- (7) For each fuzzy point x_{α} in X and each $V \in \psi(Y)$ satisfying $f(x_{\alpha})qV$ there exists a $U \in \psi(X)$ such that $x_{\alpha}qU$ and $f(U) \leq V$.

Theorem 2.3. Let $f: X \to Y$ be one-to-one and onto. f is a fuzzy semi-preirresolute mapping iff $(f(A))^{\square} \leq f(A^{\square})$ for each fuzzy set A in X.

3 Fuzzy Semi-preseparation Axioms

Definition 3.1. An fts X is called fuzzy semi-pre- T_0 iff for every pair of distinct fuzzy points x_{α} and y_{β} the following conditions are satisfied:

- (1) When $x \neq y$, either there is a $U \in \xi(x_{\alpha})$ such that U /qy_{β} or there is a $V \in \xi(y_{\beta})$ such that V /qx_{α} .
 - (2) When x = y and $\alpha < \beta(\text{say})$, there is a $V \in \eta(y_{\beta})$ such that $V \not | \eta x_{\alpha}$.

Theorem 3.2. An fts X is fuzzy semi-pre- T_0 iff for every pair of distinct fuzzy points x_{α} and y_{β} , either $x_{\alpha} \notin (y_{\beta})^{\widehat{}}$ or $y_{\beta} \notin (x_{\alpha})^{\widehat{}}$.

Proof. Let X be fuzzy semi-pre- T_0 and x_{α} and y_{β} be two distinct fuzzy points

in X. When $x \neq y$, there is a $U \in \xi(x_1)$ such that $U \not \eta y_{\beta}$ or there is a $V \in \xi(y_1)$ such that $V \not \eta x_{\alpha}$. Suppose there is a $U \in \xi(x_1)$ such that $U \not \eta y_{\beta}$. Then $U \in \eta(x_{\alpha})$ and $U \not \eta y_{\beta}$. Hence $x_{\alpha} \notin (y_{\beta})^{\smallfrown}$. When x = y and $\alpha < \beta(\text{say})$, then there is a $V \in \eta(y_{\beta})$ such that $V \not \eta x_{\alpha}$ and so in this case also $y_{\beta} \notin (x_{\alpha})^{\smallfrown}$.

Conversely, let x_{α} and y_{β} be two distinct fuzzy points in X. We suppose, without loss of generality, that $x_{\alpha} \notin (y_{\beta})^{\frown}$. When $x \neq y$, since $x_{\alpha} \notin (y_{\beta})^{\frown}$, $x_1 \notin (y_{\beta})^{\frown}$ and hence $(y_{\beta})^{\frown}(x) = 1$. Then $(y_{\beta})^{\frown}(x) \in \xi(x_{\alpha})$ such that $(y_{\beta})^{\frown}(x) \in \xi(x_{\alpha})$ we much have $\alpha > \beta$ and then there is a $U \in \eta(x_{\alpha})$ such that $U \not \eta y_{\beta}$.

Definition 3.3. An fts X is called fuzzy semi-pre- T_1 iff for every pair of distinct fuzzy points x_{α} and y_{β} the following conditions are satisfied:

- (1) When $x \neq y$, there are $U \in \xi(x_{\alpha})$ and $V \in \xi(y_{\beta})$ such that U /qy_{β} and V /qx_{α} .
 - (2) When x = y and $\alpha < \beta(\text{say})$, there is a $V \in \eta(y_{\beta})$ such that $V \not | \eta x_{\alpha}$.

Obviously, fuzzy semi-pre- $T_1 \Rightarrow$ fuzzy semi-pre- T_0 .

Theorem 3.4. An fts X is fuzzy semi-pre- T_1 iff every fuzzy point x_{α} is fuzzy semi-preclosed in X.

Proof. Let X be fuzzy semi-pre- T_1 and x_{α} and y_{β} be two distinct fuzzy points in X. When $x \neq y$, there are $U, V \in \psi(X)$ and $U \in \xi(x_{\alpha}), V \in \xi(y_{\beta})$ such that U / qy_{β} and V / qx_{α} . Then $x_{\alpha} \in V'$. Since $V' \in \psi'(X), (x_{\alpha}) \subseteq V'$, equivalent $V / q(x_{\alpha}) \subseteq T$. Thus $(x_{\alpha}) \subseteq T$ is fuzzy semi-preclosed in X. When x = y, it is analogous to the proof of it above.

Conversely, let x_{α} and y_{β} be two distinct fuzzy points in X. When $x \neq y$, since x_{α} and y_{β} are fuzzy semi-preclosed in X, $(x_{\alpha})'$ and $(y_{\beta})'$ are fuzzy semi-preopen. Then $(x_{\alpha})' \in \xi(y_{\beta})$ and $(y_{\beta})' \in \xi(x_{\alpha})$ such that $(x_{\alpha})' \not | h x_{\alpha}$ and $(y_{\beta})' \not | h y_{\beta}$. When x = y and $\alpha < \beta(\text{say})$, obviously $(x_{\alpha})' \in \eta(y_{\beta})$ such that $(x_{\alpha})' \not | h x_{\alpha}$.

Definition 3.5. An fts X is called fuzzy semi-pre- T_2 iff for every pair of distinct fuzzy points x_{α} and y_{β} the following conditions are satisfied:

- (1) When $x \neq y$, there are $U \in \xi(x_{\alpha})$ and $V \in \xi(y_{\beta})$ such that $U \not A V$.
- (2) When x = y and $\alpha < \beta(\text{say})$, there are $U \in \xi(x_{\alpha})$ and $V \in \eta(y_{\beta})$ such that $U \not AV$.

Obviously,
fuzzy semi-pre- T_1 . Also, fuzzy semi- $T_i[6] \Rightarrow$ fuzzy semi-pre-
 T_i , i=0,1,2.

Theorem 3.6. An fts X is fuzzy semi-pre- T_2 iff for every fuzzy point x_{α} in X,

 $x_{\alpha} = \bigcap \{V^{\frown} : V \in \xi(x_{\alpha})\}$ and for any $x, y \in X$ with $x \neq y$, there is a $U \in \xi(x_1)$ such that $y \notin supp(U^{\frown})$.

Proof. Let X be fuzzy semi-pre- T_2 , x_{α} and y_{β} be fuzzy points in X such that $y_{\beta} \notin (x_{\alpha})$. To establich the required equality, it suffices to show the existence of a $V \in \xi(x_{\alpha})$ such that $y_{\beta} \notin V^{\frown}$. If $x \neq y$, then there are $U, V \in \psi(X)$ and $y_1 \in U, x_{\alpha} \in V$ such that $U \not AV$. Then $V \in \xi(x_{\alpha})$ and $U \in \eta(y_{\beta})$ such that $U \not AV$. Hence $y_{\beta} \notin V^{\frown}$. If x = y, then $\beta > \alpha$, and hence there are $U \in \eta(y_{\beta})$ and $V \in \xi(x_{\alpha})$ such that $U \not AV$. Then $y_{\beta} \notin V^{\frown}$. Finally, for two distinct points x, y of X, since X is fuzzy semi-pre- T_2 , there exist $U, V \in \psi(X)$ such that $x_1 \in U, y_1 \in V$ and $U \not AV$. Then V'(y) = 0 and $U \leq V'$. Since $V' \in \psi'(X), U^{\frown} \leq V'$. Thus $(U^{\frown})(y) = 0$, i.e., $y \notin supp(U^{\frown})$.

Conversely, let x_{α} and y_{β} be two distinct fuzzy points in X. When $x \neq y$, we first suppose that at least one of α and β is less than 1, say $0 < \alpha < 1$. There exists a positive real number λ with $0 < \alpha + \lambda < 1$. By hypothesis, there exists a $U \in \xi(y_{\beta})$ such that $x_{\lambda} \notin U^{\frown}$. Then there is a $V \in \psi(X)$ and $V \in \eta(x_{\lambda})$ such that $V \not = 0$. Now, $\lambda + V(x) > 1$ so that $V(x) > 1 - \lambda > \alpha$ and hence $V \in \xi(x_{\alpha})$ such that $U \not = 0$, where $U \in \xi(y_{\beta})$. In case $\alpha = \beta = 1$, by hypothesis there is a $U \in \xi(x_1)$ such that $U \not = 0$. Then $V = U^{\frown} \in \xi(y_1)$ such that $U \not = 0$. When x = y and $x \in \xi(x_1)$, then there is a $y \in \xi(x_2)$ such that $y \in \xi(x_1)$ such that $y \in \xi(x_2)$ consequently, there exists a $y \in \eta(y_{\beta})$ such that $y \in \xi(x_1)$ such that $y \in \xi(x_2)$ such that $\xi(x_2)$ such that

Lemma 3.7. Let X be an fts and $U, V \in \psi(X)$. If $U \not AV$, then $U \cap \not AV$.

Definition 3.8. An fts X is called fuzzy sp-regular iff for each fuzzy point x_{α} in X and each $U \in \psi(X)$ with $U \in \eta(x_{\alpha})$, there is a $V \in \psi(X)$ and $V \in \eta(x_{\alpha})$ such that $V \cap \subseteq U$.

Theorem 3.9. For an fts X, the following are equivalent:

- (1) X is fuzzy sp-regular.
- (2) For each fuzzy point x_{α} in X and each $B \in \psi'(X)$ with $x_{\alpha} \notin B$, there is a $U \in \psi(X)$ such that $x_{\alpha} \notin U^{\frown}$ and $B \leq U$.
- (3) For each fuzzy point x_{α} in X and each $B \in \psi'(X)$ with $x_{\alpha} \notin B$, there exist $U, V \in \psi(X)$ such that $U \in \eta(x_{\alpha}), B \leq V$ and $U \not AV$.

- (4) For any fuzzy set A and any $B \in \psi'(X)$ with $A \not\leq B$, there are $U, V \in \psi(X)$ such that $AqU, B \leq V$ and $U \not AV$.
- (5) For any fuzzy set A and any $U \in \psi(X)$ with AqU, there is a $V \in \psi(X)$ such that $AqV \leq V \cap \leq U$.
- **Proof.** (1) \Rightarrow (2): Let x_{α} be a fuzzy point in X and $B \in \psi'(X)$ with $x_{\alpha} \notin B$. Then $B' \in \eta(x_{\alpha})$ and $B' \in \psi(X)$. Since X is fuzzy sp-regular, there is a $V \in \psi(X)$ and $V \in \eta(x_{\alpha})$ such that $V \cap \subseteq B'$. Put $U = V \cap \subseteq U$. Then $U \in \psi(X)$ and $V \cap \subseteq \Pi(x_{\alpha})$. Hence,

 $x_{\alpha} \notin V^{\cap \square'} = V^{\cap \prime} = U^{\cap},$ and $B \leq V^{\cap \prime} = U.$

- (2) \Rightarrow (3): For any fuzzy point x_{α} in X and any $B \in \psi'(X)$ with $x_{\alpha} \notin B$, by (2) there is a $U \in \psi(X)$ such that $x_{\alpha} \notin U^{\smallfrown}$ and $B \leq U$. Hence $U^{\smallfrown} \in \eta(x_{\alpha})$ and $U^{\smallfrown} \not AU$, where $U^{\smallfrown} \in \psi(X)$. Thus (3) is obtained.
- $(3)\Rightarrow (4):$ Let A be a fuzzy set and $B\in \psi'(X)$ with $A\not\leq B$. Then there is at least one fuzzy point $x_{\alpha}\in A$ such that $x_{\alpha}\not\in B$. By (3) there are $U,V\in \psi(X)$ such that $U\in \eta(x_{\alpha}), B\leq V$ and $U\not\in V$. Since $x_{\alpha}\in A$, we have AqU.
- $(4)\Rightarrow (5):$ For any fuzzy set A and any $U\in \psi(X),\ AqU$ implies that $A\not\leq U',$ where $U'\in \psi'(X)$. By (4), there are $V,W\in \psi(X)$ such that $AqV,U'\leq W$ and $V\not AW$. Then $V^{\frown}AW$ by Lemma 3.7. Hence, $AqV\leq V^{\frown}\leq W'\leq U$.
 - $(5) \Rightarrow (1)$: Obvious.

Theorem 3.10. Let $f: X \to Y$ be a one-to-one fuzzy semi-preirresolute mapping. If Y is fuzzy semi-pre- T_i then so is X, for i = 0, 1, 2.

Proof. We prove only i = 1.

Let x_{α} and y_{β} be two distinct fuzzy points in X. When $x \neq y$, we have $f(x) \neq f(y)$. Since Y is fuzzy semi-pre- T_1 , there are $U, V \in \psi(Y)$ and

 $U \in \xi((f(x))_{\alpha}), V \in \xi((f(y))_{\beta})$

such that

 $V \not q(f(x))_{\alpha}$ and $U \not q(f(y))_{\beta}$.

Then $f^{-1}(U) \in \xi(x_{\alpha})$ and $f^{-1}(V) \in \xi(y_{\beta})$ such that

 $f^{-1}(V)$ $\not | x_{\alpha}$ and $f^{-1}(U)$ $\not | y_{\beta}$.

When x = y and $\alpha < \beta(\text{say})$, the f(x) = f(y). Since Y is semi-pre- T_1 , there is a $V \in \psi(Y)$ and $V \in \eta((f(y))_{\beta})$ such that $V \not = (f(x))_{\alpha}$. Then $f^{-1}(V) \in \eta(y_{\beta})$ such that $f^{-1}(V) \not= (x_{\alpha})$. Thus X is fuzzy semi-pre- T_1 .

References

- [1] Bai Shi-Zhong, Fuzzy weak semicontinuity, Fuzzy Sets and Systems 47(1992) 93-98.
- [2] Bai Shi-Zhong, Fuzzy strongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets and Systems 51(1992) 345-351.
- [3] Bai Shi-Zhong, Fuzzy S-irresolute mappings, J. Fuzzy Math. 4(1996) 397-411.
- [4] Bai Shi-Zhong, Q-convergence of nets and weak separation axioms in fuzzy lattices, Fuzzy Sets and Systems 88(1997) 379-386.
- [5] S.Ganguly and S.Saha, On separation axioms and T_i-fuzzy continuity, Fuzzy Sets and Systems 16(1985) 265-275.
- [6] B.Ghosh, Semi-continuous and semi-closed mapping and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems 35(1990) 345-355.
- [7] B.Hutton and I.Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3(1980) 93-104.
- [8] P.M.Pu and Y.M.Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, *J.Math.Anal.Appl.*76(1980) 571-599.
- [9] M.K.Singal and N.Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems 44(1991) 273-281.
- [10] S.S.Thakur and S.Singh, On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems 98(1998)383-391.