L— fuzzy Modules and L—fuzzy quotient modules

Qiao Bingwu

(Department of computer, Liaocheng teachers' University, Liaocheng 252059)

Abstract: In this paper, we studied the homomorphism and isomorphism of L—fuzzy modules, and gave the concept of L—fuzzy quotient modules.

Keywords: complete distributive lattice, L—fuzzy modules, homomorphism, isomorphism, L—fuzzy quotient Module.

1. Preliminaries

In this paper, $L \setminus L_1 \setminus L_2$ and L_3 are all complete distributive lattices with 0 and 1, L^X be the set of whole L—fuzzy subset of X. Let R be a ring with 1, unless specially stated, the module only refers the left module over ring R in this paper.

Definition 1.1 [1]. Let M be left module over ring R, A be a L—fuzzy subset of M, if fo any $x, y \in M$, $r \in R$, we have

- 1) $A(x+y) \ge A(x) \land A(y)$;
- 2) $A(\mathbf{r}x) \ge A(x)$;
- 3) $A(x) \ge A(-x)$;
- 4) A(0)=1,

then A is called a L—fuzzy submodule of M. In this paper, $F_L(M)$ be the set of whole L—fuzzy submodule of M.

Definition 1.2 If mapping $\tau: L_1 \to L_2$ holds arbitary intersection and union properties, and τ (0)=0, then τ is a homomorphism of lattices. If τ is a homomorphism of lattices, then τ is a isomorphism of lattices.

Definition 1.3 Let f be the mapping: $X_1 \to X_2$, $\tau: L_1 \to L_2$ is a homomorphism of lattices, if A is a L_1 —fuzzy subset of X_1 , then the L_2 —fuzzy subset of X_2 is defined by:

$$(f,\tau)(A)$$
 $(x_2) = \forall \{\tau(A) (x_1) | x_1 \in X_1, f(x_1) = x_2\}, \forall x_2 \in X_2$

If B is a L_2 —fuzzy subset of X_2 , then the L_1 —fuzzy of X_1 is defined by:

$$(f,\tau)^{-1}(B)(x_1) = \vee \{\beta \mid \tau(\beta) \le B(f(x_1)), \beta \in L_1\}, \forall x_1 \in X_1$$

Proposition 1.1[3]. Let $f: M_1 \to M_2$ is a homomorphism of modules, and $\tau: L_1 \to L_2$ is a homomorphism of lattices, $A \in F_{L_1}(M_1)$, then $(f,\tau)(A) \in F_{L_2}(M_2)$.

Proposition 1.2[3] Let $f: M_1 \to M_2$ is a homomorphism of modules, and $\tau: L_1 \to L_2$ is a homomorphism of lattices, $B \in F_{L_2}(M_2)$, then $(f,\tau)^{-1}(B) \in F_{L_1}(M_1)$.

2. The Homomorphism and Isomorphism of L—fuzzy Modules

Definition 2.1 Let $A \in F_{L_1}(M_1)$, $B \in F_{L_2}(M_2)$, if the mapping (f,τ) of A into B which satisfies:

- 1) $f: M_1 \to M_2$ is a homomorphism of modules, ;
- 2) $\tau: L_1 \to L_2$ is a homomorphism of lattices;
- 3) $(f,\tau)(A) \leq B$,

then (f,τ) is a homomorphism of A into B.

hom (A,B) denotes the set of whole homomorphisms of A into B, then we have $(f,\tau) \in hom (A,B)$.

Definition 2.2 Let $A \in F_{L_1}(M_1)$, $B \in F_{L_2}(M_2)$, if the mapping (f,τ) of A into B which satisfies:

- 1) $f: M_1 \to M_2$ is a iomomorphism of modules;
- 2) $\tau: L_1 \to L_2$ is a iomomorphism of lattices;
- 3) $(f,\tau)(A)=B$,

then (f,τ) is a isomorphism of A into B, written as $A \cong B$.

Proposition 2.1 a) Let $f: M_1 \to M_2$ homomorphism of modules, $\tau: L_1 \to L_2$ is a homomorphism of lattices, then $(f, \tau) \in hom\ (A, B)$ iff for any $\lambda \in L_1, f(A_{\lambda}) \subseteq B_{\tau(\lambda)}$.

b) Let $f: M_1 \to M_2$ is a iomomorphism of modules, $\tau: L_1 \to L_2$ is a iomomorphism of lattices, then (f, τ) is a isomorphism of A into B iff for any $\lambda \in L_1$, $f(A_{\lambda}) = B_{\tau(\lambda)}$.

Proposition 2.1 can be easily established by proposition 2 of [2].

Proposition 2.2 Let $(f,\tau) \in hom(A,B)$, $(g,\phi) \in hom(B,C)$, " \circ " is defined by $(g,\phi) \circ (f,\tau) = (g \circ f, \phi \circ \tau) \text{ ,and } A \in F_{L_1}(M_1) \text{ , } B \in F_{L_2}(M_2) \text{ , } C \in F_{L_3}(M_3) \text{ ,then }$ $(g \circ f, \phi \circ \tau) \in hom(A,C) \text{ , and } \text{ " } \circ \text{" satisfies associative law .}$

Proof: It is quite evident that $g \circ f$ is a homomorphism of modules, and $\phi \circ \tau$ is a homomorphism of lattices, because $(f,\tau) \in hom\ (A,B)$, $(g,\phi) \in hom\ (B,C)$, so $(f,\tau)(A) \leq B$, $(g,\phi)(B) \leq C$, then we have

$$(g \circ f, \phi \circ \tau)(A) = ((g, \phi) \circ (f, \tau))(A)$$
$$= (g, \phi) \circ ((f, \tau)(A))$$
$$\leq (g, \phi)(B) \leq C$$

then $(g \circ f, \phi \circ \tau) \in hom(A, C)$.

It is quite evident that "o" satisfies associative law.

3. L—fuzzy quotient modules

Proposition 3.1 Let $A \in F_L(M)$, N be a submodule of M, AZ_N is defined by ${}^AZ_N(x+N) = \bigvee_{n \in N} A(x+n)$, then AZ_N is a L—fuzzy submodule of M/N, and AZ_N is called a L—fuzzy quotient module.

Proof: Let $f: M \to M/N$, $x \to x + N$, it is every clear that f is a surjective homomorphism of M into M/N, for any $x + N \in M/N$

$$f(A)(x+N) = \bigvee_{f(y)=x+N} A(y) = \bigvee_{y+N=x+N} A(y) = \bigvee_{y \in x+N} A(y)$$
$$= \bigvee_{n \in N} A(x+n) = {}^{A}Z_{N}(x+N)$$

that is $f(A) = {}^{A}Z_{N}$, and ${}^{A}Z_{N}$ is a L—fuzzy submodule of M/N by proposition 1.1.

Proposition 3.2 Let f is a surjective homomorphism of M_1 into M_2 , $N = \ker f$, f^* is a iomomorphism of M_1/N into M_2 by $x + N \to f(x)$, if (f,τ) is a surjective homomorphism of A into B, τ is a iomomorphism of L_1 into L_2 , then (f^*,τ) is a

iomomorphism of ${}^{A}Z_{N}$ into B.

Proof: For any $x_2 \in M_2$

$$(f^*, \tau) ({}^{A}Z_{N})(x_{2}) = \bigvee_{f^*(x_{1}+N)=x_{2}} \tau ({}^{A}Z_{N})(x_{1}+N)$$

$$= \bigvee_{f(x_{1})=x_{2}} \tau (\bigvee_{n \in N} \tau (A(x_{1}+n)))$$

$$= \bigvee_{f(x_{1})=x_{2}} \tau (A(x_{1}+n))$$

$$= \bigvee_{f(u)=x_{2}} \tau (A(u))$$

$$= (f, \tau) A(x_{2}) = B(x_{2})$$

That is $(f^*, \tau)({}^AZ_N) = B$.

So (f^*, τ) is a iomomorphism of AZ_N into B by definition 2.2.

References

- [1] Zhang Chuanzhi. The . L—fuzzy submodules, J.Shangdong university,2(1989),93—97(in Chinese).
- [2] Zhang Guisheng. The homomorphism and isomorphism of L fuzzy groups .Fuzzy systems and Mathematics2(1996),19—23 (in chinese)
- [3] Zhao jianli.The categories of Fuzzy modules.The Journal of Fuzzy Mathematies, Vol. 4, No. 3(1996), 491—501
- [4] Zhao jianli. The categories of Fuzzy sets, Fuzzy homomorphism of modules and Fuzzy categories of modules. The Journal of Fuzzy Mathematies, Vol.3, No.2(1995), 261—271