α, β Operators On Quasi-Boolean Chain

Yang-Jin Cheng Dept of Math, Xiangtan University Hunan,411105, P.R.China

Abstract:At first,we propose the α operator and β operator on quasi-Boolean chain.Next investigate their properties and apply them to solve inqualities in one unknown.

keywords:Lattice,Boolean Algebra,Quasi-Boolean Chain,Operator

1 Basic Definitions

Definition 1.1. A partially ordered set (or briefly, a poset) is a pair (P, \leq) where P is a non-empty set and \leq is a binary relation on P satisfying for $x, y, z \in P$

- 1. $x \le x$ (reflexive law)
- 2. $x \le y, y \le z \Longrightarrow x \le z$ (transitive law)
- 3. $x \le y, y \le x \Longrightarrow x = y$ (anti-symmetric law)

Where no confusion is likely to arise, it is customary to also use the symbol P to denote (P, \leq) . Also, if $x \leq y$ but $x \neq y$ then we write x < y

Definition 1.2.If P is a poset then a non-empty subset C of P is called a chain in P if and only if any two elements in C are comparable. If P=C then P is a chain. (chains are also referred to as linearly or totally ordered posets) Two members a, b of poset are comparable if $a \leq b$ or $b \leq a$.

Let P be a poset. There is at most one element b in P with the property that $x \leq b$ for all $x \in P$. This element, if it exists, is called the greatest element or the unit

of P. Dually, a least element b(or zero)by the property that $b \leq x$ for $x \in P$. The zero and unit of P are denoted, when they exist, by 0_p and 1_p (or simply by 0,1).

Definition 1.3. A lattice is a poset in which x+y and x.y exist for any $x,y \in L$

In a lattice L, the following two statements are equivalent:

1.
$$x(y+z) = xy + xz$$
 for all x,y,z in L (1.1)

2.
$$u + vw = (u + v)(u + w)$$
 for all u,v,w in L (1.2)

Definitin 1.4. A lattice L is distributive if it satisfies one(and hence both)of (1.1) and (1.2)

Definition 1.5. A quasi-Boolean algebra is an algebra of the form (L, (+, ., -)) where + and \cdot are binary operations, - is a unary operation, satisfying

- 1. (L, (+, .)) is a distributive lattice with 0,1
- 2. $\overline{x+y} = \overline{x}.\overline{y}; \overline{xy} = \overline{x} + \overline{y}$ for all $x, y \in L$
- 3. $\overline{\overline{x}} = x$. for each $x \in L$

In this paper, we assume that L is a chain with a kernel element denoted by e, which is defined by the property: $e=\overline{e}$

Example 1: $L = [0,1], a+b = \min(a,b), \overline{a} = 1-a$, then (L,(+,.,-)) is a quasi-Boolean algebra, and L is a chain with a kernel element e, where e=0.5

Example 2. $L = \{a_1, a_2, a_3, a_4, a_5\}, \overline{a_1} = a_5, \overline{a_2} = a_4, a_3 = e, L$ is a quasi-Boolean chain with a kernel element e shown as Fig.1

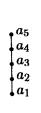


Fig.1

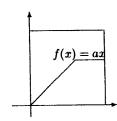
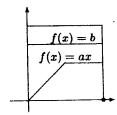


Fig.2



If $a \leq b$ Then $S = [0, 1], a\alpha b = 1$ Fig. 3

2 Operators on Quasi-Boolean Chain

Let $a, b \in C$, define

$$a\alpha b = \sum \{x | ax \le b\}$$

Since C is a complete lattice, so $\sum \{x | ax \leq b\} \in C$

Theorem 2.1. $a\alpha b$ is the greatest element of the set $\{x|ax \leq b\}$

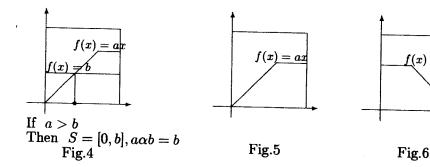
Proof. First, $a\alpha b \in \{x | ax \leq b\}$. In fact:

Let $X(a,b)=\{x|ax\leq b\}$. $\forall x_0\in X(a,b),$ then $ax_0\leq b.$ Now $\sum\limits_{x_0\in X(a,b)}ax_0=a\sum\limits_{x_0\in X(a,b)}x_0=a(a\alpha b).$ Again, $\sum\limits_{x_0\in X(a,b)}ax_0\leq b.$ So $a(a\alpha b)\leq b.$ Hence $a\alpha b\in X(a,b).$

Next. Suppose $u\in X(a,b)$, then it is easy to see that $u\leq \sum_{x_0\in X(a,b)}x_0=a\alpha b$. So The proof. is completed

Function f(x) = ax as shown in Fig.2

Consider the solution sets of the inequality $ax \le b$: (1) $a \le b$: The solution set shown as Fig.3;(2) a > b: the solution set shown as Fig.4



Hence we can define a operator α by the following

$$a\alpha b = \begin{cases} 1, & a \le b \\ b, & a > b \end{cases}$$

Let $a, b \in C$. define

$$a\beta b = \sum \{y|ay \le b\overline{x}\}$$

Since C is a complete lattice, so $~\sum \{y|ay \leq b\overline{y}\} \in C$

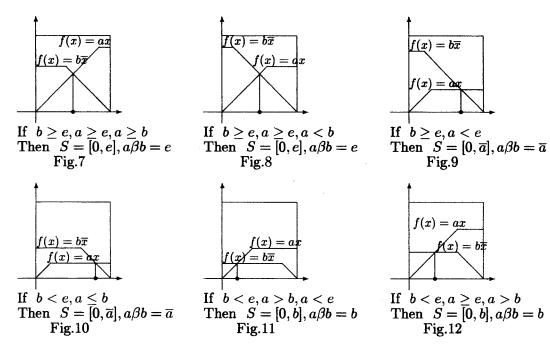
Throrem 2.2. $a\beta b$ is the greatest element of the set $\{y|ay \leq b\overline{y}\}$

Proof.First, $a\beta b \in \{y|ay \leq b\overline{y}\}$ Indeed

Let $Y(a,b)=\{y|ay\leq b\overline{y}\}$. For each $p\in Y(a,b)$, then $ap\leq b\overline{p}$; For any $q\in Y(a,b)$, so $aq\leq b\overline{q}$. Case 1. $p\leq q$: It is obviously that $ap\leq aq\leq b\overline{q}$. We can obtain that $ap\leq \prod\limits_{q\in Y(a,b)}b\overline{q}$, and than $ap\leq b\prod\limits_{q\in Y(a,b)}\overline{q}$. Again $\prod\limits_{q\in Y(a,b)}\overline{q}=\overline{\sum\limits_{q\in Y(a,b)}q=\overline{a\beta b}}$. So $ap\leq b\overline{a\beta b}$. It is easy to see that $\sum\limits_{p\in Y(a,b)}ap\leq b\overline{a\beta b}$. Again $\sum\limits_{p\in Y(a,b)}ap=a\sum\limits_{p\in Y(a,b)}p=a(a\beta b)$. Hence $a(a\beta b)\leq b\overline{a\beta b}$. Case 2p>q: It is similarly prove that $a(a\beta b)\leq b\overline{a\beta b}$.

Next, Suppose $u \in \{y | ay \le b\overline{y}\}$. It is easy to see that $u \le a\beta b$.

The function $f_1(x) = ax$, $f_2(x) = b\overline{x}$ shown as Fig.5,Fig.6 respectively. The solution sets of inequality $ax \le b\overline{x}$ shown as Fig.7—Fig.12,respectively



We can define a operator by the following

$$a\beta b = \begin{cases} e, & b \ge e, a \ge e \\ \overline{a}, & b \ge e, a < e \\ \overline{a}, & b < e, a \le b \\ b, & b < e, a > b \end{cases}$$

It is easy to obtain the following results.

Theorem 2.3. $\forall a, b \in C$

1. $a\alpha b \geq b$

- 2. If $a \leq b$, then $a\beta b \geq e$.
- 3. If $e \leq b$, then $a\beta b > e$.

Theovem2.4 $\forall a,b,c \in c$, then the following statements are equivalent:

- 1. $ace \leq b$
- 2. $\overline{a\alpha b} \leq c\alpha b$
- 3. $\overline{a\alpha b} \leq c\beta b$
- 4. $\overline{a\beta b} \leq c\alpha b$
- 5. $\overline{a\beta b} < c\beta b$

Proof. (1) \Longrightarrow (2) If $ace \leq b$, then $a \leq b$ or $c \leq b$ or $e \leq b$. Case $a \leq b$: since $a\alpha b = 1$, so $\overline{a\alpha b} = 0$. It is obviously that $\overline{a\alpha b} \leq c\alpha b$; Case accupanterise cab = 1, hence $\overline{a\alpha b} \leq c\alpha b$; Case accupanterise caccupanterise caccupanteris

- (2) \Longrightarrow (1) Suppose that ace > b. We have a > b, c > b, and e > b. By definition, then $a\alpha b = b$, and $c\alpha b = b$. Again $\overline{a\alpha b} = \overline{b}$ and e > b, so $\overline{a\alpha b} > c\alpha b$. A contradiction.
- $(1) \Longrightarrow (3) \text{ If } ace \leq b, \text{ then } a \leq b \text{ or } c \leq b \text{ or } e \leq b. \text{ case } 1 \text{ } a \leq b \text{ : since } a\alpha b = 1, \text{ so } \overline{a\alpha b} = 0. \text{ It is easy to see that } \overline{a\alpha b} \leq c\beta b; \text{ Case } 2 \text{ } c \leq b \text{ : If } b < e, \text{ then } c\beta b = \overline{c}. \text{ Again } a\alpha b \geq b. \text{ So } \overline{a\alpha b} \leq \overline{b} \leq \overline{c} = c\beta b. \text{ Hence } \overline{a\alpha b} \leq c\beta b; \text{ If } b \geq e, \text{ then } \text{Note that } a\alpha b \geq b, \text{ so } \overline{a\alpha b} \leq \overline{b} < e \leq c\beta b. \text{ Hence } \overline{a\alpha b} \leq c\beta b; \text{ Case } 3 \text{ } e \leq b \text{ : Then } a\alpha b \geq b \text{ and } c\beta b \geq e, \text{ so } \overline{a\alpha b} \leq \overline{b} \leq e \leq c\beta b. \text{ We have } \overline{a\alpha b} \leq c\beta b.$
- (3) \Longrightarrow (1) Suppose that ace > b, we obtain that a > b, c > b, e > b. So $a\alpha b = b$ and $c\beta b = b$. Then $\overline{a\alpha b} = \overline{b} > b = c\beta b$. It follows that $\overline{a\alpha b} > c\beta b$. A contradiction.
- $(1) \Longrightarrow (4) \text{ If } ace \leq b, \text{ then } a \leq b \text{ or } c \leq b \text{ or } e \leq b. \text{ Case } 1 \text{ } a \leq b \text{ : If } b < e, \text{ then } a\beta b = \overline{a}. \text{ So } \overline{a\beta b} = a \leq b \leq c\alpha b; \text{ If } b \geq e, \text{ then } a\beta b \geq e. \text{ So } \overline{a\beta b} \leq e \leq b \leq c\alpha b; \text{ Case } 2 \text{ } c \leq b \text{ : we obtain that } c\alpha b = 1. \text{ So } \overline{a\beta b} \leq c\alpha b; \text{ Case } 3 \text{ } e \leq b \text{ : Then } a\beta b \geq e, \text{ so } \overline{a\beta b} \leq e < b \leq c\alpha b. \text{ Hence } \overline{a\beta b} \leq c\alpha b.$
- (4) \Longrightarrow (1) Suppose that ace > b, then a > b, c > b, e > b. It is easy to see that $c\alpha b = b, a\beta b = b$. So $\overline{a\beta b} = \overline{b} > b = c\alpha b$. A contradiction.

- $(1) \Longrightarrow (5) \text{ If } ace \leq b, \text{ then } a \leq b \text{ or } c \leq b \text{ or } e \leq b. \text{ Case } 1 \text{ } a \leq b \text{ : If } b < e, \text{ then } a\beta b = \overline{a}. \text{ So } \overline{a\beta b} = a \leq b \leq c\beta b \text{ : If } b \geq e, \text{ then } a\beta b \geq e \text{ and } c\beta b \geq e. \text{ It } follows \text{ that } \overline{a\beta b} \leq e \leq c\beta b; \text{ Case } 2 \text{ } c \leq b \text{ : We have } c\beta b \geq e. \text{ If } b < e, \text{ then } c\beta b = \overline{c}. \text{ It is obviously that } \overline{c\beta b} = c \leq b \leq c\beta b. \text{ Hence } c\beta b = \overline{c} \geq \overline{b} \geq \overline{a\beta b}; \text{ If } b \geq e, \text{ then } a\beta b \geq e \text{ and } c\beta b \geq e. \text{ Clearly } \overline{a\beta b} \leq c\beta b.$
- (5) \Longrightarrow (1) Suppose that ace > b, Then a > b, c > b, e > b It follows that $a\beta b$ and $c\beta b = b$. It is obviously that $\overline{a\beta b} = \overline{b} > b = c\beta b$. A contradiction.

3 Inquality in One Unknown on Quasi-Boolean Chain

We have discussed the properties of " α " operator and " β " operator on quasi-Boolean chain, Now we apply it to solve Inqualities in one unknown.

Consider the following inquality.

$$a_1x + c_1\overline{x} \le a_2x + b_2x\overline{x} + c_2\overline{x} \tag{3.1}$$

Now construct the inqualities

$$a_1x + c_1\overline{x} \le a_2x \tag{3.11}$$

$$a_1x + c_1\overline{x} \le b_2x\overline{x} \tag{3.12}$$

$$a_1 x + c_1 \overline{x} \le c_2 \overline{x} \tag{3.13}$$

Theorem3.1 The inequality (3.1) is consistent if and only if $a_1c_1e \leq a_2 + b_2 + c_2$, and

- 1. If $a_1c_1e \leq a_2$, then the set $[\overline{c_1\beta a_2}, a_1\alpha a_2]$ is the solution of the inequality (3.1)
- 2. If $a_1c_1e \leq b_2$, then the set $[\overline{c_1\beta b_2}, a_1\beta b_2]$ is the solution of the inquality (3.1)
- 3. If $a_1c_1e \leq c_2$, then the set $[\overline{c_1\alpha c_2}, a_1\beta c_2]$ is the solution of inequality (3.1)

Proof. First Inquality (3.11) is consistent if and only if $[0, a_1 \alpha a_2] \cap [\overline{c_1 \beta a_2}, 1] \neq \emptyset$. Again $\overline{c_1 \beta a_2} \leq a_1 \alpha a_2$ if and only if $a_1 c_1 e \leq b_2$ and inquality (3.12) is consistent if and only if $a_1 c_1 e \leq b_2$ and inquality (3.13) is consistent if and only if $a_1 c_1 e \leq c_2$. Note that inquality (3.1) is consistent if and only if there is at least a inquality among inquality (3.11),(3.12) and (3.13) is consistent and the solution

set ofinquality (3.1) is the union of their solution set. So inequality (3.1) is consistent if and only if $a_1c_1e \leq a_2 + b_2 + c_2$.

Next consider the following inquality

$$a_1x + b_1x\overline{x} + c_1\overline{x} \le a_2x + b_2x\overline{x} + c_2\overline{x} \tag{3.2}$$

Construct two inqualities

$$(a_1+b_1)x+c_1\overline{x} \le a_2x+b_2x\overline{x}+c_2\overline{x} \tag{3.21}$$

$$a_1x + (b_1 + c_1)\overline{x} \le a_2x + b_2x\overline{x} + c_2\overline{x} \tag{3.22}$$

It is obviously that

Therem 3.2. Inequality (3.2) is consistent if and only if $a_1c_1e \le a_2 + b_2 + c_2$ and its solution set is the union of the solution set of inequalities (3.21),(3.22)

References

- [1] Davey,B.,and priestley,H.,Introduction to Lattices and Order, Cambridge University Press,1990.
- $\label{eq:compendium} \begin{tabular}{ll} [2] Gierz,G.,Hofmann,K.,Keimel,K.,Lawson,J.,Mislove,M.,and Scott,D.,A. Compendium of Continuous Lattices,Springer-Verlag,1980. \end{tabular}$
- [3] W.Rounds and G.-Q. Zhang, Resolution in the Smyth Powerdomain, Proceedings of the 13rd international Conference on Mathematical Foundations of Programming Semantics (MFPS'97), ENTCS, Volume 6,1997.