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Abstract:At first,we propose the o operator and S operator on quasi-Boolean
chain.Next investigate their properties and apply them to solve inqualities in one
unknown. '
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1 Basic Definitions

Definitionl.1. A partially ordered set(or briefly,a poset) is a pair (P, < ) where P
is a non-empty set and < is a binary relation on P satisfying for z,y,z € P

1. o <z (reflexive law)

2. z<y,y<z=>r <z (transitive law)

3. = <y,y <z= =y (anti-symmetric law)
Where no confusion is likely to arise,it is customary to also use the symbol P to
denote (P, <) . Also,if <y but = # y then we write z <y

Definition 1.2.If P is a poset then a non-empty subset C of P is called a chain
in P if and only if any two elements in C are comparable.If P=C then P is a chain.
(chains are also refered to as linearly or totally ordered posets)Two members a,b

of poset are comparable if a <bor b<a.

Let P be a poset.There is at most one element b in P with the property that

r < bforall x € P. This element,if it exists,is called the greatest element or the unit



of P. Dually,a least element b(or zero)by the property that b<zfor z € P. The
zero and unit of P are denoted,when they exist,by 0, and 1, (or simply by 0,1).

Definition 1.3. A lattice is a poset in which x+y and x.y exist for any z,y € L

In a lattice L,the following two statements are equivalent:

1. z(y+z)=zy+zzforalxyzinL (1.1)

2. u4+vw=(u+v)(u+w)foraluyv,winL (1.2)

Definitin 1.4. A lattice L is distributive if it satisfies one(and hence both)of (1.1)
and (1.2)

Definition 1.5. A quasi-Boolean algebra is an algebra of the form (L, (+,.,—)) where

+ and . are binary operations, — is a unary operation, satisfying

1. (L,(+,.)) is a distributive lattice with 0,1

g
8

F+y=75Tg=2+7 forall z,yel

3. T=z.foreach x €L
In this paper,we assume that L is a chain with a kernel element denoted by e, which
is defined by the property: e =€

Example 1: L = [0,1],a + b = min(a,b),@ = 1 — a, then (L, (+,.,—)) is a

quasi-Boolean algebra,and L is a chain with a kernel element e ,where e=0.5

Example 2. L = {a),a3,a3,a4,a5},3] = a5,83 = a4,a3 = ¢, L is a quasi-

Boolean chain with a kernel element e shown as Fig.1

b A
as f(z)=b
Qa4 f(fl?) = a3 f(z) = az
as
as
a)
I a<d
Fig.1 Then S =10,1],aab=1

Fig.2 Fig.3
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2 Operators on Quasi-Boolean Chain

Let a,b € C, define
aab = Z{zlam < b}

Since C is a complete lattice,so Yzlaz <b} eC
Theorem 2.1. aab is the greatest element of the set {z]az < b}
Proof. First, aab € {z|az < b}. In fact:

Let X(a,b) = {zlaz < b}. Vzg € X(a,b), then azrg < b. Now Y. arg=
To€X (a,b)

a Y. x = a(eadb). Again, ¥ azg < b. So a(aab) < b. Hence aab €
ToEX (a,b) To€EX (a,b)
X(a, b).

Next.Suppose « € X(a,b), then it is easy toseethat u < Y 9 =aab. So
z9EX (a,b)
The proof. is completed

Function f(z) = az as shown in Fig.2

Consider the solution sets of the inequality ax < b: (1) @ < b: The solution
set shown -as Fig.3;(2) a > b: the solution set shown as Fig.4

p ] r

f(z) = ;L f(z) = ad (z) = b7

()

If a>5b 0.4
Then S =[0,b],aab=>5 . .
Fig.4 Fig.5 Fig.6

Hence we can define a operator a by the following

ob = 1, a<b
=18 a>b

Let a,b € C. define
aBb=) {ylay < bz}

Since C is a complete lattice,so YHylay <bg} ecC

Throrem2.2. af3b is the greatest element of the set {ylay < by}



26

Proof.First, af3b € {y|ay < b7} Indeed

Let Y(a,b) = {ylay < by}. For each p € Y(a,b), then ap < bp; For any
q € Y(a,b), so ag < bg. Case 1. p < q : It is obviously that ap < ag < bG. We
can obtain that ap < |[] bg, and than ap < b [] ¢ Again I1 g=

g€Y (a,b) g€Y (a,) g€Y (a.)
> q=aPfb. So ap < bafb. It is easy to see that Y. ap < bafb. Again
q€Y (a,b) pEY (a)b)

> ap=a Y p=a(apb). Hence a(aBb) < bafb. Case2 p > q: It is
reY (ab) p€Y(ab)

similarly prove that a(a(b) < bafb.
Next,Suppose u € {ylay < by} .It is easy to see that u < a/3b.

The function fi(z) = azx, fo(r) = bF shown as Fig.5,Fig.6 respectivly.The
solution sets of inquality ax < b shown as Fig.7—Fig.12,respectivly

3 b 3
f(:l:)=a1 )= ‘Z‘ $)=bf
x) = b7 (z) =dz
f(z) =
If b>ea>ea>b If 6>e,a>ea<b If b>ea<e
Then S =[0,¢e|,afb=¢ Then S =[0,¢],afb=¢ Then S =[0,a],afb=1a
Fig.7 Fig.8 ‘ Fig.9
3 3 ) 3
f(z)=az
z) =bT ) =af T) = bF
f(z) =vug (z¥= bz
If b<ea<d If b<e,a>ba<e If b<e,a>e,a>b

Then S =[0,al,afb=a Then S =10,b],aBb=1b Then S =[0,b],a3b=0

Fig.10 Fig.11 Fig.12

We can define a operator by the following

e, .b>ea>e
a, b>ea<e

b= 3 iy Y
af a, b<ea<d
b, b<e,a>b

It is easy to obtain the following results.

Theorem2.3. Ya,b € C

1. aab>b



2. If a < b, then af8b > e.

3. If e< b, then afBb > e.
Theovem2.4 Va, b, ¢ € c, then the follwing statements are equivalent:

1. ace<b

2. aab < cab
3. aab < cfb
4. afb < cab
5. aflb < cfBb

Proof. (1) = (2) If ace < b, thena < bor c < bore < b Casel a

b :since aab = 1, so aab = 0. It is obvionsly that aab < cab; Case2 c

IV IA A

b : since cab = 1, hence aab < cob; Cased e < b : since aob > b and cab

b,somgggcab,thus aab < cab.

(2) == (1) Suppose that ace > b. We have a > b, ¢ > b, and e > b. By
definition,then aab = b, and cab = b. Again aab = b and e > b, so aab > cab. A

contradiction.

(1) => (3) If ace < b, then a < b or c<bore<b casel a<b: since
aab:l,somzo.Itiseasytoseethat&?bgcﬂb;(}ase2c$b:If b < e, then
cfb=7¢. Again aab > b. So mgggézcﬂb. Hence aab < ¢f3b; If b > e, then
Note that aab > b, so m§5<e§cﬂb. Hence aab < cfb; Case 3 e < b: Then
ach > b and cfb>e, so aab<b < e < cBb. We have aab < cOb.

(3) = (1) Suppose that ace > b, we obtain that a > b,c > be > b. So
acb =band cfb=0>b Then aab =056 > b = cf3b. It follows that aab > cfb. A

contradiction.

(1) = (4) If ace < b, then a<bor c<bor e<b Casela<b:If
b < e, then aBb = a. So %:aﬁbﬁc&b;[f b > e, then aBb > e. So
aflb < e < b < cab; Case 2 ¢ < b : we obtain that cab=1. So afb < cab; Case
3e<b:Then aBb>e, so afb < e < b < cab. Hence afBb < cab.

(4) = (1) Suppose that ace > b, then a > b,c > be > b Itis easy to see
that cab=b,a8b=b. So aBfb="5b> b= cab. A contradiction.
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(1) = (5) If ace < b, then a < b or c<bor e<b Casel a<b:If
b < e, then afb=a. So a_ﬂ_bzangcﬂb:Isze,then afb > eand cfb > e. It
follows that afb < e < cfBb; Case 2 ¢ < b: We have cfb>e. If b<e, then
cfb = e. It is obviously thatém=c§b§cﬂb. Hence cBfb=7¢>b > afb; If
b>e, then afb> e and cf3b > e. Clearly afb < cf3b.

(5) = (1) Suppose that ace > b, Then a > b,c > b,e > b It follows that
aBband cAb=0b. It is obviously that afb=5> b= cBb. A contradiction.

3 Inquality in One Unknown on Quasi-Boolean Chain
We have discussed the properties of ”a” operater and ”3" operater on quasi-
Boolean chain,Now we apply it to solve Inqualities in one unknown.
Consider the following inquality.
a1Z + 1T < aox + boaT + % (3.1)

Now construct the inqualities

A + T < asr (3.11) |
a1+ 1T < boxT (3.12)
T+ T < ey (3.13)

Theorem3.1 The inquality (3.1) is consistent if and only if ajcie < ag + by +
c2, and

1. If ajc1e < ay, then the set [e18as, ajaag] is the solution of the inquality (3.1)
2. If ajc1e < by, then the set [c13b2, a1 Bbs] is the solution of the inquality(3.1)

3. If ajcie < ¢y, then the set [cTacz, a1 Bcy] is the solution of inquality(3.1)

Proof. First Inquality (3.11) is consistent if and only if [0, a;caz) N[ci Bag, 1] #
0. Again c¢;Bay < ajaas if and only if ajcie < by and inquality (3.12) is con-
sistent if and only if ajcie < by and inquality (3.13) is consistent if and only
if ajc1e < ¢3. Note that inquality (3.1) is consistent if and only if there is at least

a inquality among inquality (3.11),(3.12) and (3.13) is consistent and the solution
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set ofinquality (3.1) is the union of their solution set.So inquality (3.1) is cousistent
if and only if a1c1e < ag + ba + ca.

Next consider the following inquality

a1z + 02T + 1T < agx + bt + 0T (3.2)
Construct two inqualities

(a1 + b))z + 1T < ax + baxT + T (3.21)

a1z + (by + ¢1)T < agx + beaT + 2T : A (3.22)
It is obviously that

Therem 3.2. Inquality (3.2) is consistent if and only if ajcie < ag+b2+c2 and

its solntion set is the union of the solution set of inqualities (3.21),(3.22)
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