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Abstract

A new view on manufacturing systems (MS) modelling and control synthesis is presented. MS are
understood here to be a kind of DEDS (discrete event dynamic system). Petri nets (PN), frequently
used for DEDS modelling, are replaced here by a form of corresponding oriented graphs (OG), where
the nodes of the OG are represented by the PN positions and the OG edges involve the PN transitions.
The adjacency matrix of such a graph is utilized in the DEDS control synthesis procedure. It helps to
generate the state reachability tree in both the straight-lined system development (from an initial state
to a prescribed terminal one) and that of the backtracking one (from the terminal state to the initial
one). To perform the DEDS control synthesis combinig both of kinds of the model development is used.
The coincidence both of the state reachability trees yields the possible trajectories of the system devel-
opment. In such a way all solutions how to reach the prescribed terminal state from the given initial one
are automatically found. To choose the most suitable solution rule-based knowledge about the control
task specifications is utilized. It may be fuzzy too.

Keywords: Automatic solving, control system synthesis, discrete-event dynamic systems, manufac-
turing systems, knowledge representation, Petri nets.

1 Introduction

Any model of a system to be controlled does not yield immediatelly the sequence of control interferences
that are necessary in order to reach a prescribed terminal state of the system starting form a given initial
state at fulfilling prescribed control task specifications like criteria, constraints, etc. A control synthesis
procedure is necessary on this way. There are many successful methods of control synthesis suitable for the
continuous-time systems (CTS) or/and discrete-time systems (DTS). However, usually they are not usable
for solving the DEDS control synthesis problem. Namely, DEDS are completly different (as to the principle
of their dynamic behaviour) from the CTS and DTS. Consequently, they also need different methods for their
modelling and control. PN-based models of DEDS are used very frequently. To solve the control synthesis
problem more effectively and to make it fully automatic the OG-based model of the system corresponding
with the PN-based one (presented e.g. in [1], [2]) is used. The possibility of creating the OG-based k-variant
model of DEDS corresponding to the PN-based k-invariant one was pointed out in the author’s paper (9]
and (in an extended form) in [10]. The main principle of a simple straight-lined control system synthesis
was also presented in the latter one. Because of such an "one-way” approach the control synthesis was not
fully automatic, but only automated. The idea of the backtracking approach as well as that of combining
both the staight-lined approach and the backtracking one represents the main contribution of this paper. It
makes the automatic solving the control synthesis problem possible.

From the system theory point of view MS are a kind of DEDS because they consist of many cooperating
subsystems with many conflicts among them. Their behaviour is influenced by occurring discrete events
that start or stop activities of the subsystems. In the other words, DEDS are asynchronouos systems
with concurrency or/and parallelism among the activities of their subsystems. Usually, they are large-scale
or/and complex. Other representants of DEDS are flexible manufacturing systems (FMS), transport systems,
different kinds of communication systems, etc. Because DEDS are very important in human practice, the
demand of the successful and efficient control of them is very actual. Special kinds of systems usually need
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special kinds of approaches to the system modelling and control synthesis. The control task specifications
(like constraints, criteria, etc.) for DEDS are usualy given verbally or in another form of nonanalytical terms.
The main problem of the DEDS control synthesis is:

e to express the DEDS model in the most suitable form in order to have the description of the system
behaviour at disposal

e to express the control task specifications to be met in the most suitable form of a knowledge base in
order to satisfy them properly

e to choose the most suitable solution of the control synthesis problem.

Just the model-based analysing the behaviour of the system to be controlled with respect to knowledge about
the control task specifications connected with both the straight-lined search of the control possibilities and
the backtracking one yield the automatic solving of the control synthesis problem.

2 The straight-lined development of the system behaviour
Consider the k-variant OG-based model of DEDS introduced in [9] in the form
Xgr1 = Agxx , k=0N (1)

where

k is the discrete step of the DEDS dynamics development.

X = (a:(lk), ...,a:;k))T ; k =0, N is the n- dimensional state vector of the DEDS in the step k; xl(k) , 1=
1,n is the state of the elementary subprocess in the step k. Its activity is expressed by 1 and its passivity
by 0 (in the PN analogy it is the state of the elementary position p;).

A, = {6?-“)}, 5B = 'y(k) € {0,1},i = 1,n;j = 1,n, because the corresponding set Ap C

J ij tpilp;
(X x U) x (U x X) where X is the set of the PN positions p;, ¢ = 1,n and U is the set of the PN
transitions t; , j = 1,m. The matrix expresses the causal relations between the subprocesses depending on

the occurrence of the discrete events. The element 61(;?) = ’Yt(,l,c.),,,,
ilPj

transition function of the PN transition fixed on the OG edge oriented from the node p; to the node p;. It
can be seen that the matrix Ay is the transpose of a ”functional” adjacency matrix. Namely, its elements
are not integers but two-valued transition functions of the elementary PN transitions.

€ {0, 1} expresses the actual value of the

The introduced model corresponds to the PN-based model of DEDS, the simplest form of which (expressed
in analytical terms) is the following

xk+1=xk+B.uk, B=GT—F, k=0,N (2)
Fou, < xi (3)

where

k is the discrete step of the system dynamics development.

Xk = (o,(,'f), cers a,(,’f‘))T . k =0, N is the n- dimensional state vector of the DEDS in the step k; crgf) , =
1,n is the state of the elementary subprocess p; in the step k. Its values express the states of the DEDS
elementary subprocesses. They acquire their values from the set {0,1} where 0 expresses the passivity and
1 expresses the activity of the corresponding subprocess.

u; = ('ygf), vy 'yt(fl))T is the m-dimensional control vector of the system in the step k. Its components

'yt(f), j = 1, m, represent the states of occurring the DEDS elementary discrete events (e.g. starting or

ending the elementary subprocesses or other activities). They acquire their values from the set {0,1} where
1 expresses the presence and 0 expresses the absence of the corresponding discrete event.

B, F, G are, respectively, (n x m), (n x m) and (m x n)- dimensional structural matrices of constant
elements. The matrices F, G are the incidence matrices (in the analogy with the incidence matrices of
the mutual oriented interconnections among the PN positions and transitions) expressing the mutual causal
relations among the DEDS subprocesses and the discrete events. The incidence matrix F expresses the
causal relations oriented from the states of the DEDS subprocesses to the discrete events occuring during
the DEDS operation. The incidence matrix G expresses the causal relation oriented from the discrete events



to the states of the DEDS subprocesses. The elements of these matrices acquire their values from the set

{0,1} where 1 expresses the existence and 0 expresses the nonexistence of the corresponding causal relation.
(.)T symbolizes the matrix or vector transposition.

In order to express the equation (1) more exactly, let us use the following form of its description

{xk+1} = Ak.{xk} y k= O,N -1 (4)

where {xj1} is an aggregate of all of the states that are reachable from the previous states {xx} in one
step k. There is only one exception {xo} = X, because the initial state is only single. Let us develop the
system in the straight-lined orientation. Hence,

{Xl} = Ao.Xo (5)
{Xz} = Al.{xl}ZAl.Ao.Xo (6)

{Xk} = Ak_l.{xk_l}=Ak_1.Ak._2.A1.Ao.X0

{xx} = ®roxo (7)
k—1

&r; = Jlai; i=0k-1 (8)
i=j

The multiplying is made from the left because of the causality principle. It must be said that the meaning
of the multiplying and additioning operators in the development of the k-variant model have symbolic
interpretation. For example, an element ¢ﬁf, 1 = 1, n; 5 = 1, n of the transition matrix ® ¢ is either
a product of k elements (the transition functions expressing the ”trajectory” containing the sequence of
elementary transitions that must be fired in order to go from the initial elementary state x? into the final
state :ngk)) or a sum of several such product (when there are several "trajectories” from the initial state
to final one). It can be said that any nonzero element 6% of the matrix Ag gives us information about

ij
(k) 52,k1

reachability of the state a’;jl from the state o;,,’. Hence, any element ?; ; of the transition matrix ®y2 51

gives us information about the reachability of the state o2 from the state o%!.

When the input vector x; represents a state of the system and we do not know the actual state of the
transition functions (i.e. the actual state of the functional elements 58?) of the k-variant matrix Ax), we can
use the transpose of the OG adjacency matrix - i.e. the matrix A = {d;;} having the same structure like

the matrix Ay = {ég?)}, however its elements are not functional but they are defined as follows

1 if 6 #0

s i=lng=1, 9
0 otherwise @ i " )

A={b;}; &;= {

It means that A is the constant matrix with all elements corresponding with the functional elements of the
matrix Ay equal to 1. Thus, in the below system development we can understand that Ay = A, k = 0, N—1.

3 The backtracking development of the system behaviour

The procedure very analogical to that starting from the initial state x¢ can start from the terminal state
x;. Let us denote the terminal state as xny. The aggregate state vector from which the terminal state is
reachable can be expressed as follows

{XN—k—l} = A%—];_l'{XN—k}a k= O,N -1

where {xy_,—1} is an aggregate of all of the states from which the states {xy_} are reachable in one step
k. There is only one exception {xny} = xy, because the terminal state is only single. Consequently, the
backtracking system development is the following

{xv-1} = AR xn (10)
{xn-2} = ANy {xn-1}=AF AT | xy



{x0} = Af{xi}=A7AT. AL AT  xn
{x0} = ®f,x« 11)

4 The control synthesis procedure

To synthetize the DEDS control (to find the most suitable sequence of the control vectors {ug, uy, ..., un_1}
transforming the system from the prescribed initial state xo into the given terminal state x; = xn at the
simultaneous fulfilling the prescribed control task specifications like criteria, constraints, etc.), several ap-
proaches can be used. The main problem of the control synthesis is that usually there are several possibilities
how to proceed in any step of the system dynamics development. Consequently, a tree of the possibilities
of the system behaviour is possible. The main idea of the approach presented in this paper is to avoid the
actual tree construction. Simultaneous utilizing both the straigth-lined approach and the backtracking one
reduces the amount of computations. The procedure is the following:

e to proceed from the initial state x¢ by the straight-lined approach
® to proceed simultaneously from the desirable terminal state xy by the backtracking one

¢ to compare the actual trajectories (the aggregated states obtained by means of the straight-lined
procedure and that obtained by means of the backtracking one). In such a way all possible trajectories
from the given initial state to the desirable terminal one are found.

What is important is that the state reachability trees need not be generated in the form of graphs. It is
sufficient to work with the numerical adjacency matrix A of the graph modelling the DEDS. Namely, it is
the non-negative matrix defined e.g. in [12, 16, 18]. The necessary condition for the above procedure has to
be fulfiled - namely, the terminal state x; must be reachable from the initial state xo. It is not very difficult
to test the reachability. For such a testing the result of the proved theorem [12, 14, 15] can be used. The
test is based on computation of the k-th power (where k is unknown before) of the OG adjacency matrix.
Because we use the transpose A of the original adjacency matrix, to obtain A% containing the first nonzero
element 51-(;) we have to multiply the matrix A from the left. The nonzero element 61-(;?) of the matrix A*
gives us information not only about the reachability of the i-th element of the state vector x) from the j-th
element of the state vector xo but also about the number of the steps k that have to be performed (more
mathematical details can be found in literature (12, 14, 15]). How long is it necessary to compute the powers
of the matrix? The question is answered in [15] - the exponent k < n — 1.

4.1 A discussion about the exponent £ for the indecomposable adjacency matrix

At the guess of the exponent k in special cases the results published in [16, 18] concerning indecomposable
non-negative n X n-dimensional matrices can be utilized. The indecomposable matrix is defined in [12] as
the matrix which is not decomposable. The matrix A is decomposable if it is of the following form (12) or
if there exists a permutation matrix P such that PTAP is of the form (12)

A Ap

A= ( §  Ax ) (12)
where submatrices A;;, i = 1,2 are square matrices. A real matrix R is non-negative if all its elements
75 = 0. When a power of the indecomposable non-negative n x n-dimensional matrix is a positive matrix
(a real matrix Q is positive if all its elements g;; > 0), the matrix is primitive (as it is mentioned in [16] this
term was introduced by Frobenius in 1912). For the best upper bound of the exponent k,,;,, guaranting that
corresponding power of the primitive matrix (for n > 2) is positive the inequality kmin < wn = (n—1)2+1is
valid - see [16, 18]. Hence, at least one common state can be found by both the straight-lined procedure and
the backtracking one. The proposed combined approach to the control synthesis seems to be very powerful
for a wide class of PN.

There are some new results for n > 3 in [13] concerning the minimal exponent. It is proved that if
kmin > |wn/2] + 2 then the primitive directed graph has cycles of exactly two different lengths 4,7 with
n 2 j > 1. Because [11] and some others distinguishe the oriented and directed graphs (the oriented graph is
understood in [11] to be a directed graph having no symmetric pair of directed edges or in other words the
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directed graphs without loops or multiple edges) the new results are applicable for our case only partially.
In addition to this the OG adjacency matrix in general can be decomposable (and consequently it will
be imprimitive). However, the considerations analogical to indecomposable matrix A can be done for the
indecomposable submatrices A;;, i = 1,2 of the decomposable matrix A.

5 A simple example

Let us demonstrate the presented approach in details. Many particulars can be explained in such a way.
Consider a simple case of DEDS the PN-based model of which is given on the left side of Fig. 1. The terminal

Figure 1: The PN-based and OG-based models

state vector xu is equal to the initial one

X0 = (00100)7 (13)
The structure of the control vector is
ue = (17, 18, 4§, ¢, 4P, 4 4B HENT B e 0,1}, i=1,8 (14)
The parameters of the PN-based model are n=2>5 m=2_8
01 000
10010000 SO
01000010 00010
F=]100100000|G=
0 00 0 1
0 0001001
00000T100 10000
0 6 010
01 0 00

At the construction of the OG-based model given on the right side of Fig. 1 consider the elementary transitions
as the elements 61(;?) of the matrix Ay as follows

0 0o P o ¥ o o & o B
t 0 o £ o & 0 0 & o
Ar=f 0o # o o o [=] 0o & o 0o o
4 0 o0 o s 5B 0 0 o

0o 0 0o ¥ o 0 0 0 &8 o

To avoid using the complicated transition matrices we can utilize the powers of the numerical adjacency
matrix in order to find that after three, four, five, etc. steps from the initial state the terminal state (the
same like the initial one) is reachable. \

0 0 1 0 1 01 0 1 0 2 1 0 1 0
1 0 0 1 0 1 1 1 0 1 1 1 1 2 1
A=f10 1 0 0 0 |;A%=1 0 0 1 0]:;4%=)1 1 1 0 1
1 1. 0 0 0 1 0 1 1 1 1 2 1 1 1
0 0 0 1 0 1 1.0 0 0 1 0 1 1 1



At =

0 = W N
B BN = W
i e )
W DN BN
i e L ]
B,
I
W Ot W Ut N
BN b 0w w
W = W N
W W Ww
NI Y )
>,
I
[ BN G S e
O W WL
Lo Ut G U R
W~ = Ot
Lo Ut L Ut N

By the way, we can see that the 4-th power of the matrix A is positive. However, in spite of this it cannot
be said that it is primitive because it is decomposable. In Tab. 1 we have the straight-lined sequence of the
aggregated states (the left part of the table) and the backtracking sequence of the aggregated states (the
right part of the table).

Table 1: The straight-lined system development (on the left) and the backtracking one (on the right)

xo  {x1} {xa} {x3s} {xa} {xs} | x0 {x1i} {x2} {xs} {xa} {xs}
0 1 0 0 2 2 3 1 1 1 0 0
0 0 1 1 1 3 3 1 1 0 1 0
1 0 0 1 1 1 1 1 1 0 0 1
0 0 1 1 1 3 2 2 0 1 0 0
0 0 0 1 1 1 1 1 1 0 0 0

After comparing the corresponding columns both of the previous parts of the Tab. 1 their coincidence
is given in Tab. 2. The tables are expressed graphically on Fig. 2 and Fig. 3 respectively. By means of

Table 2: The resulting trajectory

xo {x1} {xo} {xs} {x4} {xs}
0 1 0 0 0 0
0 0 1 0 1 0
1 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 0
s step k s step k
;r 0 1 2 3 4 5 ;r 0 1 2 3 4 5
t 5 2 t 5
e % e t
: aNG : 2
3 3
£9 / t 1\ 4
2
2 2 ¥
) ti | ) N

Figure 2: The graphical expression of the straight-lined system development (on the left) and the backtrack-
ing one (on the right)

comparing both the straight-lined development and the backtracking one we can find three possible solutions
of the control synthesis problem. The 5-step solution (when the corresponding columns of the left and right
parts of the Tab. 1 coincide), the 4-step solution (when the columns of the right part of the Tab. 1 coincide
with the columns of its left part shifted to the right for one column) and the 3-step solution (when the
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Figure 3: The 5-step solution (on the left), the 4-step solution (in the center) and the 3-step one (on the
right) of the control synthesis problem

columns of the right part of the Tab. 1 coincide with the columns of its left part shifted to the right for two
columns). These solutions are given on Fig. 3. In order to denote the elementary sections of trajectories by
the transitions that have to be fired, the adjacency matrix Ay can be utilized. It stores information about
the placement of the transitions. Consequently, the sequence of the control vectors for the 5-step solution is
the following

w = (0,0,1,0,0,00,07;u =(1,0,0,0,0,0,0,07; u; =(0,0,0,0,0,0, 1, 0)T
w3 = (0,0,0,0,0,00 1)7;u =(0,1,0,0,0,0,0,0)7

6 An illustration of solving the complex control synthesis problem

Consider the maze problem introduced by Ramadge and Wonham in [19] and completly solved by author’s
PN-based approaches [1, 2, 3, 4, 17]. Two "participants” - in [19] a cat and a mouse - can be as well e.g.
two mobile robots or two automatically guided vehicles (AGVs) of the FMS, two cars on a complicated
crossroad, two trains in a railway network, etc. They are placed in the maze (however, it can also be e.g.
the complicated crossroad, etc.) given on Fig. 4 consisting of five rooms denoted by numbers 1, 2,..., 5

4 U 9
ms c41 O m2
B e e S B

Cs ma me m3 C2
*— —e M1

5 1 3
—e C6 630——

mouse cat

Figure 4: The maze structure.

connecting by the doorways exclusively for the cat denoted by c;,i = 1,7 and the doorways exclusively for
the mouse denoted by m;,j = 1,6. The cat is initially in the room 3 and the mouse in the room 5. Each
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doorway can be traversed only in the direction indicated. Each door (with the exception of the door ¢7) can
be opened or closed by means of control actions. The door ¢y is uncontrollable (or better, it is continuously
open in both directions). The controller to be synthetized observes only discrete events generated by sensors
in the doors. They indicate that a participant ist just running through. The control problem is to find a
feedback controller (e.g. an automatic pointsman or switchman in railways) such that the following control
task specifications - three criteria or/and constraints will be satisfied:

1. The participants never occupy the same room simultaneously.

2. It is always possible for both of them to return to their initial positions (the first one to the room 3
and the second one to the room 5).

3. The controller should enable the participants to behave as freely as possible with respect to the con-
straints imposed.

At the construction of the PN-based model of the system the rooms 1 - 5 of the maze will be represented
by the PN positions p; - ps and the doorways will be represented by the PN transitions. The permanently
open door c7 is replaced by means of two PN transitions ¢; and tg symbolically denoted as cgk) and cgk).

Both the PN-based representation of the maze and the OG-based one are given on Fig. 5 and Fig. 6. Let

Figure 6: The PN-based and OG-based model of the mouse

us demonstrate the presented approach in details on this case of DEDS. Many particulars can be explained
in such a way. The terminal state vector of the cat °xy is equal to the initial one

Xy = °xo = (00100)7 (15)
The terminal state vector of the mouse ™xy is equal to the initial one

"xn ="xo = (00001)7 (16)



The structure of the cat control vector is

ug = (cgk), cgk), cgk), c,(lk), cék), cék), c(7k), cgk))T; c,(-k) €{0,1}, i=1,8 (17)

(o4
The structure of the mouse control vector is
mug = (m(lk), mék), mgk), mik), mék), mék))T ; m,(»k) € {0,1}, ¢=1,6 (18)

The parameters of the PN-based model of the cat movement possibilities are

n=>5 m =8
01000
10010000 00100
1000 0
01000010 P
F=|{ 00100000 |G=
0000 1
0000100 1 PO
00000100 Ce et
0100 0

The parameters of the PN-based model of the mouse movement possibilities are

n=>5 m=26

100100 00100
0100 0

001000 e

mr—-| 010000 |™G=

0000 1

00000 1

000010 00010
10000

At the construction of the OG-based models consider the elementary transitions as the elements 687) of
the matrix Ay as follows. The matrix for the cat is

0 0 < o N I 1
P00 Lo L | N T (R |
Ag=| 0 &P o o o =] o <& o 0 0
R R | R VR D) 0 0
0o 0 o ¥ o 0 0 0 e® o
and the matrix for the mouse is
0o mP o m¥ o 0o ms) o msk g
o o m¥P o o o o0 ™ o o
"Ar=m" o o o o [=[mF o o 0o o
o 0 0 0 m® o o o o mk
m¥ 0 0o o0 o0 ms¥) 0 0 0 0

To avoid using the complicated transition matrices we can utilize the powers of the numerical adjacency
matrices in order to find that after three, four, five, etc. steps from the initial state the terminal state (the
same like the initial one) is reachable. In the case of the cat

[en]
o
—_
o

CA = CAZ:

cA4 cAS

o =N OO OO

— W NNk OO O
ok ek ek = N O O O O
—_ LW @ OO

W W OO =

NN =W O = 0O

QO Ut Q) UT B M e e e

N OB W W OO
H W W O OO
WWN s O O
[S RN IS EEN e N el
B w ot @O =
WUty — O
Wkt e O
LW wopn MmO



In the case of the mouse

01 0 1 0 0 0 1 0 1 2 0 0 0 0
0 01 0 0 1 0 0 0 O 0 1 0 1 0
m"A=|1 0 0 0 0 |™A?2=]|0 1 0 1 0 |™A%®=|0 0 1 0 1
0 0 0 0 1 1 0 0 0 O 01 0 1 0
1 0 0 0 O 0 1 0 1 0 0 0 1 0 1
0 2 0 2 0 0 0 2 0 2 4 0 0 0 O
00 1 0 1 2 0 0 0 O 0 2 0 2 0
mAY=| 2 0 0 0 0 |™A=|0 2 0 2 0 |™Af=]0 0 2 0O 2
0 0 1 0 1 2 0 0 0 O 0 2 0 2 0
2 0 0 0 0 0 2 0 2 0 0 0 2 0 2

The transition matrices (i.e. the corresponding powers of the matrices A) yields information (see the bold
elements °d3 3 of the corresponding powers of the matrix °A) that the cat has single solutions with the length
3, 4, and 5 steps and three 6-step solutions. The mouse has (see the bold elements ™d5 5 of the corresponding
powers of the matrix ™A) the single solution of the length 3 and two 6-step solutions. This matrix is not
primitive. It is a special matrix, where mAF+3 = 2™ Ak, Let us illustrate the proposed approach to the
control synthesis. In Tab. 3 we have the straight-lined sequence of the aggregated states of the cat and mouse
behaviour. Very analogically (using the powers of the transpose of the adjacency matrix) the backtracking
sequence of the aggregated states of the cat and mouse are found (Tab. 4). Consider the situation when the
the left parts of the Tab. 3 and the Tab. 4 are overlapped. Let us compare their corresponding columns and
create their coincidence. In such a way the resulting Tab. 5 can be obtained.

Table 3: The straight-lined system development of the cat (on the left) and that of the mouse (on the right)

°xo {*x1} {2} {“xa} {°xa} {°x5} {°x6} || ™Xo{™ X1} {"x2}{"xa}{™ x4} {™ x5} {" x5}
1 0 0 2 2 2 0 1 0 0 2 0
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-0 oo o
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Table 4: The backtracking system development of the cat (on the left) and that of the mouse (on the right)

{x0} {“x1} {°xo} {°x3} {*xa} {°x5} °x6 || {"x0} {"x1} {"x2} {"x3} {"x4} {"x5} ™x6
5 3 1 1 1 0 0

0
0
1
0

[N el

N ONOO
OO NO
[eNeNoNel V)
_0 = OO0
O = O = O
OO OO
— O OoOCoCOo

1 1 1
1 1 0
2 0 0
1 1 0

W ok W w
— 0 = W

Table 5: The resulting 6-step trajectory of the cat behaviour (on the left) and that of the mouse (on the
right)

°xo {x1} {*x2} {*x3} {*x4} {°x5} °x6 || ™x0 {"x1} {"x2} {"x3} {"x4} {"x5} ™Xg
1 0 0 1 0 0

OO = OO

0 1 0
0 0 0
0 1 1
0 0 0

_oo oo o
O = OO O
(= e NeBoll S
= =00
O = OO
OO0 OO -
= O oo O

1 1 0
1 0 1
0 0 0
1 0 0

The straight-lined and backtracking development of the cat is given on Fig. 7 and those of the mouse on
the Fig. 8.

Using the 6-step tables the independent solutions for the cat and the mouse expressed on Fig. 9 are
obtained. The overlaping of both the 6-step independent solution of the cat and that of the mouse the final
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Figure 7: The graphical expression of the straight-lined (on the left) and the backtracking (on the right)
development of the cat behaviour
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Figure 8: The graphical expression of the straight-lined (on the left) and the backtracking (on the right)
development of the mouse behaviour

solution of the problem inquestion can be found. It is necessary to apply the rules expressing the above

introduced three control task specifications. Thus, c? is eliminated and m3 is prefered because the room 5

is the place of the mouse comeback. Analogically, m? is eliminated and c3 is prefered because the room 3 is

the place of the cat comeback. The final solution of the cat and mouse control synthesis is given on Fig. 10.
Hence, the sequence of the final control vectors for the cat is the following

Cu0 ::(050715050a07050)T ;Cul ::(1’0’0a030’0,0,0)T; cu2 = (0,1,0,0,0,0,0,0)T
‘u3 = (0,0,1,0,0,0,0,07; *uy = (1,0,0,0,0,0,0,07; us = (0, 1,0,0,0,0,0,0)7

In order to fulfil the demand of the free movement also the following sequence is possible (however, it contains
movement through the uncontrollable door)

‘ug = (0,0,1,0,0,0,0,07; “uy; =(0,0,0,1,0,0,0,07; “up = (0,0,0,0,0,0,0, )T
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Figure 9: The independent 6-step solution of the cat control synthesis problem and the that of mouse
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Figure 10: The final (mutually dependent) solution of the cat control synthesis problem and that of mouse

“u3 = (0,0,1,0,0,0,1,07; °uy = (1,0,0,0,0,0,0, )7 ; us = (0, 1,0, 0,0, 0,0, 0)T
The sequence of the final control vectors for the mouse is the following

mug = (0,0,0,0,1,07; ™u, =(0,0,0,0,0,1)T; ™y = (0,0,0,1,0,07T
mu3 = (07 07 07 09 17 O)T ) mu4 = (Oa Oa Oa 07 0, l)T ) mu5 = (07 07 07 13 07 O)T
To explain better the principle of the proposed approach to the control synthesis, it is better to use the

5-step coincidence of the straight-lined and backtracking developments of the system. Namely, in such a case
Table 6 yields single trajectory. This table can be obtained by means of shifting the left part of the Table 4

Table 6: The resulting 5-step trajectory of the cat behaviour

°xo {°x1} {*x2} {*x3} {*x4} °xs
1 0 0 0 0

OO~ OO
o O OO

0 0
0 1
1 0
0 0

oo o

1
0
0
0

to the left for one column (in comparison with the left part of the Table 3) and coinciding the overlapped
columns. After shifting to the left once more and coinciding the corresponding columns the 4-step solution
can be found. After further shifting to the left we have 3-step solution of the control synthesis problem.
Fig. 11 expresses graphically the 5-, 4- and 5-step solutions of the cat, while the Fig. 12 expresses graphically
the 3-step solution of the mouse obtained analogically. The 5- and 4-step solution of the mouse do not exist.

6.1 Summary

By means of comparing 6-step both the straight-lined development of the system and the backtracking one
we are able to find three 6-step independent solutions of the cat control synthesis problem. In addition to
these in any step of the shifting we are able to find single independent solution. In such a way we have
three possible single independent solutions (5-, 4-, and 3-step ones). Analogically, two 6-step independent
solutions and the single 3-step independent solution of the mouse control synthesis problem can be found.

In order to denote the elementary sections of the trajectories by the corresponding transitions that have
to be fired, the corresponding adjacency matrix (A or ™Ayg) can be utilized. It stores information about
the placement of the transitions.

To satisfy the prescribed control task specifications some of the independent solutions had to be eliminated
and consequently, the final solutions (dependent on the control task specifications) were found.

The main aim of involving the details of solving the example was to demonstrate the applicability of
the approach proposed in this paper. Although the control task specifications were given only verbally, the
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Figure 11: The 5-step solution (on the left), the 4-step solution (in the center) and the 3-step one (on the
right) of the cat control synthesis problem
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Figure 12: The 3-step solution of the mouse control synthesis problem

approach makes possible to solve the control synthesis problem in analytical terms. However, knowledge
about the control task specifications has to be represent in appropriate form. It is very important at the
choice of the most suitable solution.

7 The choice of the most suitable solution

It can be seen in the above example that a suitable knowledge base can be used in order to choose the most
suitable possibility when there are several solutions of the control synthesis problem. In order to create such
a knowledge base special kinds of PN (logical or/and fuzzy PN) can be utilized. Knowledge in general can
be understood to be a complex causal discrete system consisting of some pieces of knowledge (e.g. some
statements S;, ¢ = 1, n) that are mutually interconnected by means of causal relations (e.g. into the rules
R;, j = 1, m). In order to represent rule-based knowledge - consisting of a system of the IF-THEN rules

e.g. like the following one
R;: IF (S,and Syand S.) THEN (SgandS,) (19)

represented by the PN fragment given on Fig. 13, where S,, Sy, S are the input statements (causes) and
S,, S, are the output ones (consequences) - several different approaches can be used. The PN-based approach
[6] can be utilized on this way. The truth propagation in case of logical PN is given on Fig. 13. In case
of fuzzy rules the fuzzy PN are utilized. On Fig. 14 the situation before and after firing a fuzzy rule is
illustrated. More details about the mathematical tool concerning the knowledge representation as well as
about the knowledge base (KB) construction can be found in the author’s works - see e.g. [6, 8, 9, 17]. In [9]
even the actual KB for solving the same example, however described by means of the PN-based approach,
was introduced too. The same mathematical tool can be utilized here, but the actual elementary statements
and rules of the KB can be a little different like those in [9].
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Figure 13: The rule R; with the input and output statements - a). The example of the rule R; in bivalued
logic and its state: b) before its evaluation; c) after its evaluation

Figure 14: An example of a fuzzylogical rule R; before firing (on the left) and after firing (on the right).

8 Conclusions

In this paper the new approach to MS modelling and control synthesis was presented. MS were understood
here to be a kind of DEDS. The PN-based approach to modelling and control synthesis was replaced here by
means of the corresponding OG-based one with the OG nodes being the original PN positions and the OG
edges involving the PN transitions. The adjacency matrix of such a graph was utilized here in the DEDS
control synthesis procedure. The matrix and its transpose helps to generate the state reachability tree in
both the straight-lined system development (from an initial state to a prescribed terminal one) and that of
the backtracking one (from the terminal state to the initial one). By means of combinig both of the kinds of
the model development automatic solving the control synthesis problems was performed. The coincidence
of both the straight-lined state reachability tree and that of backtracking one yields the possible trajectories
of the system development. In such a way all solutions how to reach the prescribed terminal state from
the given initial one were automatically found. To choose the most suitable solution with respect to the
prescribed control task specifications, rule-based knowledge about them has to be used. On this way the
logical or/and fuzzy PN can be used, because the knowledge can be fuzzy too. More details about the KB
construction are given in [9].
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