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Abstract

k-order additivity of fuzzy measures is discussed from several points of view. Three
alternative definitions are recalled or introduced. Also the generalization to k-order
pseudo-additivity is given.
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1 Introduction

k—order additive discrete fuzzy measures were introduced by M. Grabisch [2] in
1996, see also [3]. For the philosophical background and discussions on properties
of k-order additive fuzzy measures, including the notifications of some applications,
we recommend [4]. In this note we recall only the original Grabisch’s definition
which works on finite universes only. To overcome the finitness restriction, we
have proposed in [7] an alternative definition of k-order additive fuzzy measures
independent of the cardinality of the universe we deal with. Finally, we introduce a
new definition of k—order additivity which is somehow in the spirit of k—monotonicity
of fuzzy measures, see, e.g., [1, 8]. All three definitions are equivalent on finite
universes. The modification of all three types of definitions for the case of a pseudo—
addition &, especially for the case of @ = V, will be given, too.

2 Grabisch’s approach

Let X be a finite non—empty set. A fuzzy measure m : P(X) — [0,00] is a non—
decreasing mapping with m(@) = 0. Because of the finitness of X, m is sometimes
also called a discrete fuzzy measure.

The Moébius transform My, : P(X) — [—o0,00] of m is defined by

Mp(A) =D (-1)M\Blm(B), (1)
BCA

where |A\ B| is the cardinality of the relative complement of B in A. Note that the
convention +0o + (—oo) = +o0 should be used whenever that eventuality occurs.
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Note also that m can be reconstructed from M,, be means of Zeta transform m =
zZ My,

m(A) = ) Mn(B). (2)

BCA

Definition 1 Let m be a discrete fuzzy measure and k € N. Then m is called a
k-order additive (discrete) fuzzy measure whenever My, (A) =0 for all A C X with
cardinality |A| > k.

Note that if £ = 1, then (1) and (2) result to
m(4) = _ m({z}), 3)
€A

i.e., m is an additive set function, and hence a classical discrete measure.
Note that each classical discrete fuzzy measure m can be represented as a linear
combination of Dirac measures

1 if ze A

0 else » TEX,

myg : P(X) — [0,00], mg(A) = {

ie.,

m=3" comg, @

where the constant ¢, = m({z}) = My, ({z}).

Similarly, each 2-order additive discrete fuzzy measure m can be written as a
linear combination

m= E CzMg + Ed{z,y}m{m,y} 3 (5)
zeX THY
where ; 4
1 if {z,y} C
man@={ o RV e =2

and d{:z:,y} = Mm({zay})'

Note that while ¢, can be chosen as arbitrary non-negative constants, diz,y}
admit also negative values (however, the monotonicity of m restricts the freedom in
the choice of values d(g })-

Though Grabisch’s Definition 1 is based on the finitness of X, it can be extended
to countable universe X, too. For an additive measure m on a countable universe
X (i.e., l-order additive fuzzy measure on X) formula (4) can be directly applied.
Similarly, for 2-additive fuzzy measure m on countable X we can apply (2) with
¢z € [0,00], diz,} € [~00,00] such that for any A G X and z € X \ A the inequality

Y dizy+e >0 (6)
z€A

holds. Note that (6) means that m(A) < m(A U {z}). However, there is no direct
way to extend Definition 1 to the case of an uncountable universe X.
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3 Cartesian product—based approach

To avoid shortcuts of Grabisch’s approach to the k-order additivity, we have pro-
posed in 7] an alternative definition.

Definition 2 Let (X,.A) be a measurable space and m : A — [0, 00] a monotone set
function vanishing in the empty set, m(0) = 0. Let k € N. Then m is called a k-
order additive set function on (X,.A) if there is an additive set function my, : AF —
[0,00] defined on the product measurable space (X, A)* such that for all A € A,
m(A) = my(A4F).

A k-order additive set function m : A — [0,00] is called a k-order additive fuzzy
measure on (X, A) if the corresponding additive set function my, is weakly monotone,
i.e., if my(A*) < my(B*) whenever A,B € A, AC B.

It is evident that Definition 1 is covered by Definition 2. Indeed, let X be a
finite universe and let m be a k-order additive discrete fuzzy measure on X. Then
it is enough to define an additive set function m; on X* by

_ My ({z1,...,zx})
D) = T ) = fon sl
to see that m is a k—order additive measure in the sense of Definition 2, too. Vice-
versa, if m is k—order additive in the sense of Definition 2 with corresponding addi-
tive set function my, we have

Mp(A) = my, ({(z1,- - - 21)| {21, .., 2%} = A})

and hence M,,(A) = 0 whenever |A| > k.

Take, e.g., the basic 2-order additive fuzzy measure m; 4} introduced in the
previous section (obviously Mz} With £ # y can be defined on an arbitrary space
X with |X| > 1). The relevant mg defined on (X, .A)? (supposing {(z,y)} € A?)
can be chosen just to be the Dirac measure mg = myg 3.

Note also that for any measure p on a finite space X, the power m = u? is a
2-order additive discrete fuzzy measure in the sense of Definition 1. To see this not
obvious fact, compute My, ({z,y, z}) for a 3—element subset {z,y,2} C X:

M ({2,3,2)) = m({z,3,2}) = (m({z,9}) + m({z, 2}) + m({y, 2}))
+ m({z}) +ml{y}) +m({z}) = W(z)) + sy} + a({z})?
= (=) + s + Ble) + 8= + W) +6({2)?)
+BUEh + ) + () = 0

However, applying Definition 2 (on an arbitrary measurable space (X, .A)), it is
evident that m = p? is 2-order additive. Indeed, it is enough to define an additive
set function mg = u x p on (X, A)%.

Both approaches to the k—order additivity described in Definitions 1 and 2 are
based not directly on the discussed set function m, but on some related set functions:
M, in the first case, my in the second one. In the next section we propose an
alternative definition based directly on m only.
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4 Alternative definition

The standard additive set function m : A — [0, 0] is defined by the equality
m(A U B) = m(A) + m(B) (7

forall A, Bc A, ANB=0.

Inspired by Definition 2, for 2-order additive fuzzy measure m on (X,.A) with
corresponding additive set function my : A? — [0, 00] from (7) applied to mg, we
can see that for all A, B, C € A pairwise disjoint we have

m(AUBUC) = m(AUB)+m(AUC) +m(BUC) — (m(A4) + m(B) + m(C)) . (8)

Then (8) can be taken as a characterization of the 2-additivity of m. Indeed,
supposing the validity of (8), we can define

mg(A X A) = m(A)
and
m(AU B) — m(A) — m(B)
2

whenever A, B € A, AN B = (. This allows to define m9 on an arbitrary rectangle
C x D withCND=E by

ma(A x B) = ma(B x A) =

’ng(CXD) = mg(EXE)+m2((C\E)XE)
+ m(Ex (D\E))+m:((C\E)x(D\E)).

Finally, (8) ensures the additivity of ma.

Similarly we can discuss the case of higher orders, justifying the next alternative
definition of the k-order additivity.

Definition 3 Let m be a fuzzy measure on (X, A) and let k € N. Thenm is a k-
order additive fuzzy measure whenever for all pairwise disjoint measurable subsets
Ay,...,Agy1 € A we have

m (’:Q:A,-) = Y (-1 (UA,-) : (9)

IG{1,k+1} i€l

Note that Definition 3 is not a constructive one as the previous two definitions
of the k-order additivity. On the other hand, only Definition 3 allows directly to
exclude the k—order additivity (similarly as by violation of (7) we are able imme-
diately to see the non-additivity of the discussed m). All three definitions can be
modified for a pseudo-addition &, too. However, in the case of Definition 1, first
a relevant modification of the Mébius transform My, should be done, see [6, 5].
Therefore we will continue with modifying of Definitions 2 and 3 only.
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5 k—order pseudo—additive fuzzy measures

Recall that a pseudo-addition @ : [0, 00]? — [0, 00] is a continuous, associative and
non—decreasing operation on [0, co] with 0 as a neutral element [9, 10, 8]. Note also
that the only idempotent pseudo-addition @ is the supremum (maximum), & = V.

Definition 4 Let m be a fuzzy measure on (X, A), k € N and @ a pseudo-addition.
Then m is called a k-order ®—fuzzy measure whenever there is a weakly monotone
@-measure i, on (X, A)F such that m(A) = mi(A4%), A € A.

Note that my, is @—measure if my(AUB) = my(A) ®my(B) whenever A, B € Ak
such that AN B = §.

An alternative definition is the next one.

Definition 5 Let m be a fuzzy measure on (X, A), k € N and & a pseudo-addition.
Then m is called a k-order ®—fuzzy measure whenever for any pairwise disjoint
measurable subsets Ay,...,Ar1 €A

® »(Us)- @ n(ys). 00

1c{1,2,...,k+1} el 1C{1,2,...,k+1} el
|I| is odd |I| is even

Note that for the k—order maxitive fuzzy measures, i.e., when & = V, (10) can
be rewritten and Definition 5 modified as follows.

Definition 6 A fuzzy measure m is a k-order mazitive fuzzy measure if and only
if for any Ay,..., A1 € A,

k+1 k+1
m(UAi)z\/m Jai| - (11)
i=1 j=1 i#j

From (11) we can see the following: from any (k+ 1)-tuple of measurable subsets of
X we can delete some member not influencing the measure of the union of discussed

subsets. By induction, from any finite system (A;)icr of measurable subsets of X
with |I| > k, we can choose a subsystem (4;);ecs, J C I, |J| =k such that

A typical example of a 2-order maxitive fuzzy measure on a subset X of some
Banach space B is the diameter

diam(4) = sup(|lz — y|l | =,y € 4).
Take, e.g., any finite system ({z;})ics of singletons, |I| > 2. It is obvious that
diam({z:}ier) = llz — yll = diam({z,y})

for some z,y € {z;}icr-
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