Three alternative definitions of k-order additive fuzzy measures

Radko MESIAR

Department of Mathematics, Fac. of Civil Engineering,
Slovak University of Technology, Radlinského 11, 813 68 Bratislava, Slovakia
E-mail: mesiar@vox.svf.stuba.sk

Abstract

k-order additivity of fuzzy measures is discussed from several points of view. Three alternative definitions are recalled or introduced. Also the generalization to k-order pseudo-additivity is given.

Key words: Additivity, fuzzy measure, k-order additivity.

1 Introduction

k-order additive discrete fuzzy measures were introduced by M. Grabisch [2] in 1996, see also [3]. For the philosophical background and discussions on properties of k-order additive fuzzy measures, including the notifications of some applications, we recommend [4]. In this note we recall only the original Grabisch's definition which works on finite universes only. To overcome the finitness restriction, we have proposed in [7] an alternative definition of k-order additive fuzzy measures independent of the cardinality of the universe we deal with. Finally, we introduce a new definition of k-order additivity which is somehow in the spirit of k-monotonicity of fuzzy measures, see, e.g., [1, 8]. All three definitions are equivalent on finite universes. The modification of all three types of definitions for the case of a pseudo-addition \oplus , especially for the case of \oplus \vee , will be given, too.

2 Grabisch's approach

Let X be a finite non-empty set. A fuzzy measure $m: \mathcal{P}(X) \to [0, \infty]$ is a non-decreasing mapping with $m(\emptyset) = 0$. Because of the finitness of X, m is sometimes also called a discrete fuzzy measure.

The Möbius transform $M_m: \mathcal{P}(X) \to [-\infty, \infty]$ of m is defined by

$$M_m(A) = \sum_{B \subset A} (-1)^{|A \setminus B|} m(B), \qquad (1)$$

where $|A \setminus B|$ is the cardinality of the relative complement of B in A. Note that the convention $+\infty + (-\infty) = +\infty$ should be used whenever that eventuality occurs.

Note also that m can be reconstructed from M_m be means of Zeta transform $m = Z_{M_m}$,

$$m(A) = \sum_{B \subset A} M_m(B). \tag{2}$$

Definition 1 Let m be a discrete fuzzy measure and $k \in \mathbb{N}$. Then m is called a k-order additive (discrete) fuzzy measure whenever $M_m(A) = 0$ for all $A \subset X$ with cardinality |A| > k.

Note that if k = 1, then (1) and (2) result to

$$m(A) = \sum_{x \in A} m(\lbrace x \rbrace), \qquad (3)$$

i.e., m is an additive set function, and hence a classical discrete measure. Note that each classical discrete fuzzy measure m can be represented as a linear combination of Dirac measures

$$m_x: \mathcal{P}(X) o [0,\infty]\,, \qquad m_x(A) = \left\{egin{array}{ll} 1 & ext{if} & x \in A \ 0 & ext{else} \end{array}
ight., \;\; x \in X\,,$$

i.e.,

$$m = \sum_{x \in X} c_x m_x \,, \tag{4}$$

where the constant $c_x = m(\{x\}) = M_m(\{x\})$.

Similarly, each 2-order additive discrete fuzzy measure m can be written as a linear combination

$$m = \sum_{x \in X} c_x m_x + \sum_{x \neq y} d_{\{x,y\}} m_{\{x,y\}}, \qquad (5)$$

where

$$m_{\{x,y\}}(A) = \left\{egin{array}{ll} 1 & ext{if} & \{x,y\} \subset A \ 0 & ext{else} \end{array}
ight. , \quad \left|\{x,y\}
ight| = 2,$$

and $d_{\{x,y\}} = M_m(\{x,y\}).$

Note that while c_x can be chosen as arbitrary non-negative constants, $d_{\{x,y\}}$ admit also negative values (however, the monotonicity of m restricts the freedom in the choice of values $d_{\{x,y\}}$).

Though Grabisch's Definition 1 is based on the finitness of X, it can be extended to countable universe X, too. For an additive measure m on a countable universe X (i.e., 1-order additive fuzzy measure on X) formula (4) can be directly applied. Similarly, for 2-additive fuzzy measure m on countable X we can apply (2) with $c_x \in [0,\infty]$, $d_{\{x,y\}} \in [-\infty,\infty]$ such that for any $A \subsetneq X$ and $z \in X \setminus A$ the inequality

$$\sum_{x \in A} d_{\{x,z\}} + c_z \ge 0 \tag{6}$$

holds. Note that (6) means that $m(A) \leq m(A \cup \{z\})$. However, there is no direct way to extend Definition 1 to the case of an uncountable universe X.

3 Cartesian product-based approach

To avoid shortcuts of Grabisch's approach to the k-order additivity, we have proposed in [7] an alternative definition.

Definition 2 Let (X, \mathcal{A}) be a measurable space and $m : \mathcal{A} \to [0, \infty]$ a monotone set function vanishing in the empty set, $m(\emptyset) = 0$. Let $k \in \mathbb{N}$. Then m is called a k-order additive set function on (X, \mathcal{A}) if there is an additive set function $m_k : \mathcal{A}^k \to [0, \infty]$ defined on the product measurable space $(X, \mathcal{A})^k$ such that for all $A \in \mathcal{A}$, $m(A) = m_k(A^k)$.

A k-order additive set function $m: \mathcal{A} \to [0, \infty]$ is called a k-order additive fuzzy measure on (X, \mathcal{A}) if the corresponding additive set function m_k is weakly monotone, i.e., if $m_k(A^k) \leq m_k(B^k)$ whenever $A, B \in \mathcal{A}$, $A \subset B$.

It is evident that Definition 1 is covered by Definition 2. Indeed, let X be a finite universe and let m be a k-order additive discrete fuzzy measure on X. Then it is enough to define an additive set function m_k on X^k by

$$m_k(\{(x_1,\ldots,x_k)\}) = rac{M_m(\{x_1,\ldots,x_k\})}{|\{(y_1,\ldots,y_k)|\;\{y_1,\ldots,y_k\}=\{x_1,\ldots,x_k\}\}|}\,,$$

to see that m is a k-order additive measure in the sense of Definition 2, too. Viceversa, if m is k-order additive in the sense of Definition 2 with corresponding additive set function m_k , we have

$$M_m(A) = m_k (\{(x_1, \ldots, x_k) | \{x_1, \ldots, x_k\} = A\})$$

and hence $M_m(A) = 0$ whenever |A| > k.

Take, e.g., the basic 2-order additive fuzzy measure $m_{\{x,y\}}$ introduced in the previous section (obviously $m_{\{x,y\}}$ with $x \neq y$ can be defined on an arbitrary space X with |X| > 1). The relevant m_2 defined on $(X, \mathcal{A})^2$ (supposing $\{(x,y)\} \in \mathcal{A}^2$) can be chosen just to be the Dirac measure $m_2 = m_{\{x,y\}}$.

Note also that for any measure μ on a finite space X, the power $m = \mu^2$ is a 2-order additive discrete fuzzy measure in the sense of Definition 1. To see this not obvious fact, compute $M_m(\{x,y,z\})$ for a 3-element subset $\{x,y,z\} \subset X$:

$$\begin{split} M_m & (\{x,y,z\}) = m(\{x,y,z\}) - (m(\{x,y\}) + m(\{x,z\}) + m(\{y,z\})) \\ & + & m(\{x\}) + m(\{y\}) + m(\{z\}) = (\mu(\{x\}) + \mu(\{y\}) + \mu(\{z\}))^2 \\ & - & \left((\mu(\{x\}) + \mu(\{y\}))^2 + (\mu(\{x\}) + \mu(\{z\}))^2 + (\mu(\{y\}) + \mu(\{z\}))^2 \right) \\ & + & \mu^2(\{x\}) + \mu^2(\{y\}) + \mu^2(\{z\}) = 0 \end{split}$$

However, applying Definition 2 (on an arbitrary measurable space (X, \mathcal{A})), it is evident that $m = \mu^2$ is 2-order additive. Indeed, it is enough to define an additive set function $m_2 = \mu \times \mu$ on $(X, \mathcal{A})^2$.

Both approaches to the k-order additivity described in Definitions 1 and 2 are based not directly on the discussed set function m, but on some related set functions: M_m in the first case, m_k in the second one. In the next section we propose an alternative definition based directly on m only.

4 Alternative definition

The standard additive set function $m: A \to [0, \infty]$ is defined by the equality

$$m(A \cup B) = m(A) + m(B) \tag{7}$$

for all $A, B \in \mathcal{A}$, $A \cap B = \emptyset$.

Inspired by Definition 2, for 2-order additive fuzzy measure m on (X, A) with corresponding additive set function $m_2: A^2 \to [0, \infty]$ from (7) applied to m_2 , we can see that for all $A, B, C \in A$ pairwise disjoint we have

$$m(A \cup B \cup C) = m(A \cup B) + m(A \cup C) + m(B \cup C) - (m(A) + m(B) + m(C))$$
. (8)

Then (8) can be taken as a characterization of the 2-additivity of m. Indeed, supposing the validity of (8), we can define

$$m_2(A \times A) = m(A)$$

and

$$m_2(A imes B) = m_2(B imes A) = rac{m(A \cup B) - m(A) - m(B)}{2}$$

whenever $A, B \in \mathcal{A}, A \cap B = \emptyset$. This allows to define m_2 on an arbitrary rectangle $C \times D$ with $C \cap D = E$ by

$$m_2(C \times D) = m_2(E \times E) + m_2((C \setminus E) \times E) + m_2(E \times (D \setminus E)) + m_2((C \setminus E) \times (D \setminus E)).$$

Finally, (8) ensures the additivity of m_2 .

Similarly we can discuss the case of higher orders, justifying the next alternative definition of the k-order additivity.

Definition 3 Let m be a fuzzy measure on (X, A) and let $k \in \mathbb{N}$. Then m is a k-order additive fuzzy measure whenever for all pairwise disjoint measurable subsets $A_1, \ldots, A_{k+1} \in A$ we have

$$m\left(\bigcup_{i=1}^{k+1} A_i\right) = \sum_{I \subseteq \{1,\dots,k+1\}} (-1)^{k-|I|} m\left(\bigcup_{i \in I} A_i\right). \tag{9}$$

Note that Definition 3 is not a constructive one as the previous two definitions of the k-order additivity. On the other hand, only Definition 3 allows directly to exclude the k-order additivity (similarly as by violation of (7) we are able immediately to see the non-additivity of the discussed m). All three definitions can be modified for a pseudo-addition \oplus , too. However, in the case of Definition 1, first a relevant modification of the Möbius transform M_m should be done, see [6, 5]. Therefore we will continue with modifying of Definitions 2 and 3 only.

5 k-order pseudo-additive fuzzy measures

Recall that a pseudo-addition $\oplus : [0, \infty]^2 \to [0, \infty]$ is a continuous, associative and non-decreasing operation on $[0, \infty]$ with 0 as a neutral element [9, 10, 8]. Note also that the only idempotent pseudo-addition \oplus is the supremum (maximum), $\oplus = \vee$.

Definition 4 Let m be a fuzzy measure on (X, A), $k \in \mathbb{N}$ and \oplus a pseudo-addition. Then m is called a k-order \oplus -fuzzy measure whenever there is a weakly monotone \oplus -measure m_k on $(X, A)^k$ such that $m(A) = m_k(A^k)$, $A \in A$.

Note that m_k is \oplus -measure if $m_k(A \cup B) = m_k(A) \oplus m_k(B)$ whenever $A, B \in \mathcal{A}^k$ such that $A \cap B = \emptyset$.

An alternative definition is the next one.

Definition 5 Let m be a fuzzy measure on (X, A), $k \in \mathbb{N}$ and \oplus a pseudo-addition. Then m is called a k-order \oplus -fuzzy measure whenever for any pairwise disjoint measurable subsets $A_1, \ldots, A_{k+1} \in A$

$$\bigoplus_{\substack{I\subset\{1,2,\ldots,k+1\}\\|I|\ is\ odd}} m\left(\bigcup_{i\in I}A_i\right) = \bigoplus_{\substack{I\subset\{1,2,\ldots,k+1\}\\|I|\ is\ even}} m\left(\bigcup_{i\in I}A_i\right). \tag{10}$$

Note that for the k-order maxitive fuzzy measures, i.e., when $\oplus = \vee$, (10) can be rewritten and Definition 5 modified as follows.

Definition 6 A fuzzy measure m is a k-order maxitive fuzzy measure if and only if for any $A_1, \ldots, A_{k+1} \in \mathcal{A}$,

$$m\left(\bigcup_{i=1}^{k+1} A_i\right) = \bigvee_{j=1}^{k+1} m\left(\bigcup_{i \neq j} A_i\right). \tag{11}$$

From (11) we can see the following: from any (k+1)-tuple of measurable subsets of X we can delete some member not influencing the measure of the union of discussed subsets. By induction, from any finite system $(A_i)_{i\in I}$ of measurable subsets of X with |I| > k, we can choose a subsystem $(A_j)_{j\in J}$, $J \subset I$, |J| = k such that

$$m\left(igcup_{i\in I}A_i
ight)=m\left(igcup_{j\in J}A_j
ight)\,.$$

A typical example of a 2–order maxitive fuzzy measure on a subset X of some Banach space B is the diameter

$$\operatorname{diam}(A) = \sup(\|x - y\| \mid x, y \in A).$$

Take, e.g., any finite system $(\{x_i\})_{i\in I}$ of singletons, |I|>2. It is obvious that

$$diam(\{x_i\}_{i\in I}) = ||x - y|| = diam(\{x, y\})$$

for some $x, y \in \{x_i\}_{i \in I}$.

References

- [1] D. Denneberg: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht, 1994.
- [2] M. Grabisch: k-order additive fuzzy measures, Proceedings IPMU'96, Granada, 1996, pp. 1345-1350.
- [3] M. Grabisch: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92 (1997) 167-189.
- [4] M. Grabisch: The Interaction and Möbius Representation of Fuzzy Measures on Finite Spaces, k-Additive Measures. In: Fuzzy Measures and Integrals. Theory and Applications. M. Grabisch, T. Murofushi, M. Sugeno, eds. Physica-Verlag, 2000, pp. 70-93.
- [5] J.L. Marichal: Aggregations operators for multikriteria decision aid. PhD thesis, University of Liege, 1998.
- [6] R. Mesiar: k-order Pan discrete fuzzy measures. Proceedings IFSA'97, Prague, 1997, pp. 488-490.
- [7] R. Mesiar: Generalizations of k-order additive discrete fuzzy measures. Fuzzy Sets and Systems 102 (1999) 423-428.
- [8] E. Pap: Null-additive Set Functions. Kluwer, Dordrecht, 1995.
- [9] M. Sugeno and T. Murofushi: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987) 197-222.
- [10] Z. Wang and G.J. Klir: Fuzzy Measure Theory. Plenum Press, 1992.