FUZZY DERIVATIVES OF FUNCTIONS GIVEN PARAMETRICALLY AND IMPLICITELY

MARTIN KALINA

Dept. of Mathematics, Slovak University of Technology, Radlinského 11, Sk-813 68 Bratislava, Slovakia

ABSTRACT. This is a contribution to fuzzy derivatives which have been studied in [J1 - J3] and in [K1 - K5]. Results on fuzzy derivatives of functions having multidimensionl domain [K4] and chain rule [K5] are applied to get fuzzy derivatives of functions given parametrically and implicitely. These fuzzy derivatives differ from those being studied by D. Dubois and H. Prade in [DP1 - 3].

Fuzzy derivatives of real-valued functions of one variable were introduced in [K1]. They are based on the notion of fuzzy nearness relation which (for one-dimensional case) is defined as follows (see also [K1], [J1] and [D1, D2])

Let $\mathcal{X}: \mathbb{R} \times \mathbb{R} \to [0;1]$. We say that \mathcal{X} is a fuzzy nearness relation iff the following holds:

- (1) $x\mathcal{X}z = 1 \Leftrightarrow x = z$
- (2) xXz = zXx
- (3) for each x, z, t if $x \le t \le z$ then $xXt \ge xXz$.
- (4) for each $x \in \mathbb{R}$ $\lim_{t \to \pm \infty} x \mathcal{X}t = 0$. (5) for all $\alpha \in]0;1]$ and all $x \in \mathbb{R}$ there exist unique $x_{\alpha} > x$ and $x_{-\alpha} < x$ such that $x\mathcal{X}x_{\alpha} = x\mathcal{X}x_{-\alpha} = \alpha$.

The ' α '-derivative of a function f at x is then the interval given by the values

$$\frac{f(x_{-\alpha})-f(x)}{x_{-\alpha}-x}; \qquad \frac{f(x_{\alpha})-f(x)}{x_{\alpha}-x}.$$

The notation is $\frac{df}{d\mathcal{X}}(x)$ (see also [J2, J3] and [K1, K2]). The multidimensional version of such fuzzy derivatives was introduced in [K4]. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function continuous at a point (x; y). Fix some fuzzy nearness relations \mathcal{X}, \mathcal{Y} , connected with the x and y variables, respectively. Denote

$$f_{-\alpha,x}{}'(x;y) = \frac{f(x_{-\alpha};y) - f(x;y)}{x_{-\alpha} - x}, \quad f_{\alpha,x}{}'(x;y) = \frac{f(x_{\alpha};y) - f(x;y)}{x_{\alpha} - x}$$

$$f_{M_{\alpha},x}'(x;y) = \max\{f_{-\alpha,x}'(x;y); f_{\alpha,x}'(x;y)\}$$

Supported by VEGA grants 1/7146/20 and 1/7076/20

$$f_{m_{\alpha},x}'(x;y) = \min\{f_{-\alpha,x}'(x;y); f_{\alpha,x}'(x;y)\}$$

and similarly for the variable y.

The partial α -derivative of f for x at (x, y) is the interval

$$\frac{\partial f}{\partial \mathcal{X}_{\alpha}}(x;y) = [f_{m_{\alpha},x}'(x;y); f_{M_{\alpha},x}'(x;y)].$$

The **partial fuzzy derivative of** f **for** x at (x; y) is denoted by $\frac{\partial f}{\partial \mathcal{X}_x}(x; y)$ and defined by

$$\frac{\partial f}{\partial \mathcal{X}_x}(x;y) = \left[\liminf_{\alpha \to 1_-} f_{m_{\alpha},x}'(x;y); \limsup_{\alpha \to 1_-} f_{M_{\alpha},x}'(x;y) \right].$$

Before formulating main results yet some more notation is needed. Let \mathcal{Z} be a fuzzy nearness relation. Then we denote

$$z \in_{\mathcal{Z}_{\alpha}} [a; b] \Leftrightarrow (z \in [a; b] \text{ or } z\mathcal{Z}a \geq \alpha \text{ or } z\mathcal{Z}b \geq \alpha).$$

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a strictly monotone function. Then we denote $\varphi(\mathcal{X})$ the fuzzy nearness relation defined by

$$\tilde{t} \varphi(\mathcal{X}) \ t = \varphi^{-1}(\tilde{t}) \ \mathcal{X} \ \varphi^{-1}(t).$$

By the addition and multiplication of intervals (subsets of $]-\infty;\infty[)$ we mean

$$[a_1; a_2] * [b_1; b_2] = [\min\{a_1 * b_1; a_1 * b_2; a_2 * b_1; a_2 * b_2\};$$

$$\max\{a_1 * b_1; a_1 * b_2; a_2 * b_1; a_2 * b_2\}],$$

where * is either addition or multiplication.

Theorem 1. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a continuous, strictly monotone function and $\psi : \mathbb{R} \to \mathbb{R}$ and $F : \mathbb{R}^2 \to \mathbb{R}$ be continuous functions. Fix some $t \in \mathbb{R}$. Denote $\mathcal{T}, \mathcal{X}, \mathcal{Y}$ some fuzzy nearness relations, connected with the variables t, x, y, respectively and further denote

$$x = \varphi(t), \quad y = \psi(t), \quad f(t) = F(\varphi(t); \psi(t)).$$

Assume the fuzzy derivatives $\frac{\partial F}{\partial \mathcal{X}}(x;y)$, $\frac{d\varphi}{d\mathcal{T}}(t)$, $\frac{\partial F}{\partial \mathcal{Y}}(x;y)$, $\frac{d\psi}{d\mathcal{T}}(t)$ to be finite (i.e. to be subsets of $]-\infty;\infty[$). Then if there exists a fuzzy nearness relation \mathcal{Z} such that

$$F_{-\alpha,y}'(\varphi(t_{-\alpha});y) \in_{\mathcal{Z}_{\alpha}} \frac{\partial F}{\partial \mathcal{Y}_{\alpha}}(x;y) \quad \& \quad F_{\alpha,y}'(\varphi(t_{\alpha});y) \in_{\mathcal{Z}_{\alpha}} \frac{\partial F}{\partial \mathcal{Y}_{\alpha}}(x;y),$$

then

$$\frac{df}{d\mathcal{T}}(t) \subseteq \frac{\partial F}{\partial \mathcal{X}}(x;y)\frac{d\varphi}{d\mathcal{T}}(t) + \frac{\partial F}{\partial \mathcal{Y}}(x;y)\frac{d\psi}{d\mathcal{T}}(t).$$

Theorem 2. Let $F: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function such that

$$F(u;v)=c$$

defines a function $\psi: \mathbb{R} \to \mathbb{R}$ ($\psi(x) = y$). Denote \mathcal{X} and \mathcal{Y} some fuzzy nearness relations connected with the variables x and y, respectively. Let the fuzzy derivatives $\frac{\partial F}{\partial \mathcal{X}}(x;y), \ \frac{\partial F}{\partial \mathcal{Y}}(x;y), \ \frac{\partial \psi}{\partial \mathcal{X}}(x)$ to be finite (i.e. to be subsets of $]-\infty;\infty[$). Assume that there is a fuzzy nearness relation \mathcal{Z} such that

$$F_{-\alpha,y}'(x_{-\alpha};y) \in_{\mathcal{Z}_{\alpha}} \frac{\partial F}{\partial \mathcal{Y}_{\alpha}}(x;y) \quad \& \quad F_{\alpha,y}'(x_{\alpha};y) \in_{\mathcal{Z}_{\alpha}} \frac{\partial F}{\partial \mathcal{Y}_{\alpha}}(x;y).$$

Then

$$-rac{\partial F}{\partial \mathcal{X}}(x;y) \subseteq rac{\partial F}{\partial \mathcal{Y}}(x;y) rac{d\psi}{d\mathcal{X}}(x).$$

Corollary to Theorem 2. Assume all the conditions from Theorem 2 hold. Denote $\frac{\partial F}{\partial \mathcal{X}}(x;y) = [a;b]$ and $\frac{\partial F}{\partial \mathcal{V}}(x;y) = [c;d]$ Then

(a) if $\frac{\partial F}{\partial \mathcal{X}}(x;y) \subset]-\infty; 0[$ and $\frac{\partial F}{\partial \mathcal{Y}}(x;y) \subset]0; \infty[$, then

$$rac{d\psi}{d\mathcal{X}}(x)\supseteq\left[-rac{b}{c};-rac{a}{d}
ight]$$

(b) if $\frac{\partial F}{\partial \mathcal{X}}(x;y) \subset]0; \infty[$ and $\frac{\partial F}{\partial \mathcal{Y}}(x;y) \subset]-\infty;0[$, then

$$\frac{d\psi}{d\mathcal{X}}(x)\supseteq\left[-rac{a}{d};-rac{b}{c}
ight]$$

(c) if $\frac{\partial F}{\partial \mathcal{X}}(x;y) \subset]0; \infty[$ and $\frac{\partial F}{\partial \mathcal{Y}}(x;y) \subset]0; \infty[$, then

$$rac{d\psi}{d\mathcal{X}}(x)\supseteq\left[-rac{b}{d};-rac{a}{c}
ight]$$

(d) if $\frac{\partial F}{\partial \mathcal{X}}(x;y) \subset]-\infty; 0[$ and $\frac{\partial F}{\partial \mathcal{Y}}(x;y) \subset]-\infty; 0[$, then

$$rac{d\psi}{d\mathcal{X}}(x)\supseteq\left[-rac{a}{c};-rac{b}{d}
ight]$$

REFERENCES

- [D1] J. Dobrakovová, On a fuzzy nearness, Proc. Strojné inžinierstvo 1 (1998), 33 37.
- [D2] J. Dobrakovová, Nearness, convergence and topology, Busefal 80 (1999), 17 23.
- [DP1] D. Dubois, H. Prade, Towards fuzzy differential calculus, part 1; Integration of fuzzy mappings, Fuzzy Sets and Systems 8 (1982), 1 17.
- [DP2] D. Dubois, H. Prade, Towards fuzzy differential calculus, part 2; Integration on fuzzy intervals, Fuzzy Sets and Systems 8 (1982), 105 116.
- [DP3] D. Dubois, H. Prade, Towards fuzzy differential calculus, part 3; Differentiation, Fuzzy Sets and Systems 8 (1982), 225 233.

- [J1] V. Janiš, Fuzzy uniformly continuous functions, Tatra Mountains Math. Publ. 14 (1998), 177 180.
- [J2] V. Janiš, Nearness derivatives and fuzzy differentiability, Fuzzy Sets and Systems 108 (1999), 99 102.
- [J3] V. Janiš, Fuzzy mappings and fuzzy methods for crisp mappings, Acta Univ. M. Belii 6 (1998), 31 47.
- [K1] M. Kalina, Derivatives of fuzzy functions and fuzzy derivatives, Tatra Mountains Math. Publ. 12 (1997), 27 34.
- [K2] M. Kalina, On fuzzy smooth functions, Tatra Mountains Math. Publ. 14 (1998), 153 159.
- [K3] M. Kalina, Fuzzy smoothness and sequences of fuzzy smooth functions, Fuzzy Sets and Systems 105 (1999), 233 239.
- [K4] M. Kalina, On fuzzy smooth functions in multidimensional case, Tatra Mountains Math. Publ. 16 (1999), 87 94.
- [K5] M. Kalina, Nearness differentiable functions, Tatra Mountains Math. Publ., (submitted).