On fuzzy Abelian subgroups

Yunjie ZHAND and Dong YU

Depatrment of Basic Science, Dalian Maritime University

Dalian, Liaoning 116026, People's Republic of China

Abstract: In [6] Bhattacharya and Mukherjee introduced the concept of fuzzy Abelian subgroups. In this paper, the investigation of fuzzy Abelian subgroups is continued.

Keywords: Fuzzy subgroups, Fuzzy Abelian subgroups.

1. Preliminaries

We first recall some basic definitions for the sake of completeness.

Definition 1.1 Let G be a group. A fuzzy subset μ of G is called a fuzzy subgroup of G if

- $(1) \mu(xy) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in G;$
- (2) $\mu(x^{-1}) \ge \mu(x), \forall x \in G$.

The identity element of any group will always be denoted by e. If μ is a fuzzy subgroup of a group G, it follows that

$$\mu(e) \ge \mu(x), \forall x \in G$$

$$\mu(x^{-1}) = \mu(x), \forall x \in G,$$

and μ_{λ} is called a level subgroup of μ , where μ_{λ} is a level subset of μ , defined by

$$\mu_{\lambda} = \{ x \in G \mid \mu(x) \ge \lambda, \lambda \in [0, 1] \}.$$

Definition 1.2 [2] Let G be a group. A fuzzy subgroup μ of G is called to be normal if

$$\mu(xyx^{-1}) \ge \mu(y), \forall x, y \in G.$$

Theorem 1.1 [2] Let μ be a fuzzy subgroup of a group G. Then μ is a normal fuzzy subgroup of if and only if any one of the following conditions is satisfied

- (1) $\mu(xyx^{-1}) = \mu(y), \forall x, y \in G;$
- (2) $\mu(xy) = \mu(yx), \forall x, y \in G$.

Theorem 1.2 [2, 3] Let G be a group and μ a fuzzy subset of G. Then μ is a (normal) fuzzy subgroup of G is and only if the level subsets μ_{λ} , for $\lambda \in [0, 1]$, are (normal) subgroup of G.

Definition 1.3 [2] Let G be a group and μ a fuzzy subgroup of G. Let

$$N(\mu) = \{a \in G \mid \mu (aya^{-1}) = \mu (x), \forall x \in G\}.$$

Then $N(\mu)$ is called the fuzzy normalizer of μ .

Theorem 1.3 [2, 5] Let μ be a fuzzy subgroup of a group G. Then

- (1) $N(\mu)$ is a subgroup of G;
- (2) μ is fuzzy normal $\Leftrightarrow N(\mu) = G$;
- (3) μ is a fuzzy normal subgroup of the group $N(\mu)$.

Definition 1.4 [7] Let μ be a fuzzy subgroup of a group G. Let

$$C(\mu) = \{a \in G \mid \mu([a, x]) = \mu(e), \forall x \in G\}.$$

Then $C(\mu)$ is called the fuzzy centralizer of μ . Where [x, y] is the commutator of two element x, y in

G, that is, $[x, y] = x^{-1}y^{-1}xy$.

Theorem 1.4 [7] Let μ be a fuzzy subgroup of a group G. Then

- (1) $C(\mu)$ is a subgroup of G;
- (2) $C(\mu)$ is normal subgroup of $N(\mu)$.

Definition 1.5 [8] For each i = 1, 2, ..., n, let μ_i be a fuzzy subgroup of the group G_i . The product of μ_i (i = 1, 2, ..., n) is the function

$$\mu_1 \times \mu_2 \times ... \times \mu_n : G_1 \times G_2 \times ... \times G_n \rightarrow [0, 1]$$

defined by

$$\mu_1 \times \mu_2 \times ... \times \mu_n(x) = \min\{\mu_1(x), \mu_2(x), ..., \mu_n(x)\},\$$

where $x = (x_1, x_2, ..., x_n), x_i \in G, i = 1, 2, ..., n$.

Theorem 1.5 [8] For each i = 1, 2, ..., n, let μ_i be a fuzzy subgroup of the group G_i . The $\mu_1 \times \mu_2 \times ... \times \mu_n$ is a fuzzy subgroup of the group $G_1 \times G_2 \times ... \times G_n$.

Definition 1.6 [6] Let μ be a fuzzy subgroups of a group G. Let $H = \{x \in G \mid \mu(x) = \mu(e)\}$. Then μ is fuzzy Abelian if H is an Abelian subgroup of G.

2. Main results

From here on we make $H = \{x \in G \mid \mu(x) = \mu(e)\}.$

Proposition 2.1 Let μ be a normal fuzzy subgroup of a group G. Then $H \subseteq C(\mu)$.

Proof. Since $\forall x \in H$ we have $\mu(x) = \mu(e), \forall y \in G$,

$$\mu([x, y]) = \mu(x^{-1}y^{-1}xy) \ge \min\{\mu(x), \mu(y^{-1}xy)\}\$$

$$= \min\{\mu(x), \mu(x)\} \text{ (Theorem 1.1)}\$$

$$= \mu(x) = \mu(e).$$

This implies that $x \in C(\mu)$, that is, $H \subseteq C(\mu)$.

Proposition 2.2 Let μ be a fuzzy subgroup of a group G and n a natural number. Then $\mu((xy)^n) = \mu(x^ny^n), \forall x, y \in C(\mu)$.

Proof. From Theorem 1.3(3) and Theorem 1.4(2), μ is a normal fuzzy subgroup of the group $C(\mu)$. Consequently, for $\forall x, y \in C(\mu)$, we have

$$\mu((xy)^{n}) = \mu(xy...xyxyxy) = \mu(xy...xyxy^{2}x[x, y])$$

$$\geq \min\{\mu(xy...xyxy^{2}x), \mu([x, y])\}$$

$$= \mu(xy...xyxy^{2}x) = \mu(x^{2}y...xyxy^{2})$$

$$= \mu(x^{2}y...xy^{3}x[x, y]) \geq \mu(x^{3}y...xy^{3})$$

$$\geq ... \geq \mu(x^{n-1}yxy^{n-1})$$

$$= \mu(x^{n-1}y^{n}x[x, y^{n-1}])$$

$$\geq \mu(x^{n-1}y^{n}x) = \mu(x^{n}y^{n})$$

and

$$\mu(x^{n}y^{n}) = \mu(x^{n-1}y^{n}x) = \mu(x^{n-1}yxy^{n-1}[y^{n-1}, x])$$

$$\geq \mu(x^{n-1}yxy^{n-1})$$

$$\geq \dots \geq \mu(xy\dots xyxy^{2}x)$$

$$= \mu(xy\dots xyxyxy[x, y]) \geq \mu((xy)^{n}).$$

This is, $\mu((xy)^n) = \mu(x^ny^n)$.

Theorem 2.1 For each i = 1, 2, ..., n, let μ_i be a fuzzy Abelian group of the group G_i and $\mu_i(e_i) = \mu_i$ (e_i) , $\forall i, j \in \{1, 2, ..., n\}$. Then $\mu_1 \times \mu_2 \times ... \times \mu_n$ is a fuzzy Abelian subgroup of $G_1 \times G_2 \times ... \times G_n$.

Where e_i is the identity element of G_i .

Proof. From Theorem 1.5, $\mu_1 \times \mu_2 \times ... \times \mu_n$ is fuzzy subgroup of $G_1 \times G_2 \times ... \times G_n$. For each i = 1, 2, ..., n, let

$$H_i = \{x \in G_i \mid \mu_i(x) = \mu_i(e_i)\}.$$

Then H_i is a Abelian subgroup of G_i and $H_1 \times H_2 \times ... \times H_n$ is a subgroup of $G_1 \times G_2 \times ... \times G_n$. Let

$$H = \{x \in G_1 \times G_2 \times ... \times G_n \mid \mu_1 \times \mu_2 \times ... \times \mu_n(x) = \mu_1 \times \mu_2 \times ... \times \mu_n(e)\},\$$

 $e = (e_1, e_2, ..., e_n)$ is the identity element of $G_1 \times G_2 \times ... \times G_n$. Then H is a subgroup of $G_1 \times G_2 \times ... \times G_n$.

Now $\forall x \in H_1 \times H_2 \times ... \times H_n$, $x = (x_1, x_2, ..., x_n)$, $x_i \in H_i$, we have

$$\mu_{1} \times \mu_{2} \times ... \times \mu_{n}(x) = \mu_{1} \times \mu_{2} \times ... \times \mu_{n}(x_{1}, x_{2}, ..., x_{n})$$

$$= \min\{\mu_{1}(x_{1}), \mu_{2}(x_{2}), ..., \mu_{n}(x_{n})\}$$

$$= \min\{\mu_{1}(e_{1}), \mu_{2}(e_{2}), ..., \mu_{n}(e_{n})\}$$

$$= \mu_{1} \times \mu_{2} \times ... \times \mu_{n}(e_{1}, e_{2}, ..., e_{n})$$

$$= \mu_{1} \times \mu_{2} \times ... \times \mu_{n}(e).$$

Consequently, $x \in H$. Conversely, $\forall x \in H, x = (x_1, x_2, ..., x_n), x_i \in H_i$, we have

$$\min\{\mu_{1}(x_{1}), \mu_{2}(x_{2}), ..., \mu_{n}(x_{n})\} = \mu_{1} \times \mu_{2} \times ... \times \mu_{n}(x)$$

$$= \mu_{1} \times \mu_{2} \times ... \times \mu_{n}(e)$$

$$= \min\{\mu_{1}(e_{1}), \mu_{2}(e_{2}), ..., \mu_{n}(e_{n})\}$$

$$= \mu_{i}(e_{i}).$$

It follows that $x_i \in H_i$ (i = 1, 2, ..., n), that is, $x \in H_1 \times H_2 \times ... \times H_n$. Thus $H = H_1 \times H_2 \times ... \times H_n$.

Also, H_i is Abelian for each i = 1, 2, ..., n, so we have that $H = H_1 \times H_2 \times ... \times H_n$ is Abelian implying that $\mu_1 \times \mu_2 \times ... \times \mu_n$ is a fuzzy Abelian subgroup of $G_1 \times G_2 \times ... \times G_n$ is a fuzzy Abelian subgroup of Definition 1.6.

Theorem 2.2 Let μ_{α} for $\forall \alpha \in \Gamma$, be fuzzy Abelian subgroup of a group G and $\mu_{\alpha}(e) = \mu_{\beta}(e)$ for $\forall \alpha, \beta \in \Gamma$. Then $\bigcap_{\alpha \in \Gamma} \mu_{\alpha}$ is also fuzzy Abelian subgroup of G.

Proof. Let

$$H_{\alpha} = \{x \in G \mid \mu_{\alpha}(x) = \mu_{\alpha}(e)\}, \ \alpha \in \Gamma,$$

$$H = \{x \in G \mid (\bigcap_{\alpha \in \Gamma} \mu_{\alpha})(x) = (\bigcap_{\alpha \in \Gamma} \mu_{\alpha})(e)\}.$$

Then $\forall x \in H$, we have

$$\mu_{\alpha'}(x) \ge \inf_{\alpha \in \Gamma} \mu_{\alpha}(x) = (\bigcap_{\alpha \in \Gamma} \mu_{\alpha})(x) = (\bigcap_{\alpha \in \Gamma} \mu_{\alpha})(e)$$
$$= \inf_{\alpha \in \Gamma} \mu_{\alpha}(e) = \mu_{\alpha'}(e), \forall \alpha' \in \Gamma.$$

That is, $x \in H_{\alpha}$; Conservely, $\forall x \in H_{\alpha}$, we have

$$\mu_{\alpha}(x) = \mu_{\alpha}(e)\}, \forall \alpha \in \Gamma$$

implying that

$$(\bigcap_{\alpha\in\Gamma}\mu_{\alpha})(x)=\inf_{\alpha\in\Gamma}\mu_{\alpha}(x)=\inf_{\alpha\in\Gamma}\mu_{\alpha}(e)=(\bigcap_{\alpha\in\Gamma}\mu_{\alpha})(e).$$

That is, $x \in H$. It follows that $H = H_a$.

Since H_{α} for $\forall \alpha \in \Gamma$, is Abelian by Definition 1.6, we have that H is Abelian implying that $\bigcap_{\alpha \in \Gamma} \mu_{\alpha}$ is fuzzy Abelian.

References

- [1] A.Rosenfeld, Fuzzu groups, J. Math. Anal. Appl., 35(1971), 5122--517.
- [2] Wu Wangming, Normal Fuzzy Subgroups, Fuzzy Math. (in Chinese), 1(1981), 21--30.
- [3] Ren Yongcai, Fuzzy Subgroups and Maximal Fuzzy Subgroups, J. Sichuan Univ. (in Chinese), 1(1985), 20--25.
- [4] Rajesh Kumar, Fuzzy characteristic subgroups of a group, Fuzzy Sets and Systems, 48(1992), 397--398.
- [5] N.P.Mukherjee, P.Bhattacharya, Fuzzy Groups: Some Group Theoretic Analogs, Inform Sci., 39(1986), 247--268.
- [6] P.Bhattacharya, N.P.Mukherjee, Fuzzy Groups: Some Group Theoretic Analogs II, Inform. Sci., 41(1987), 77--91.
- [7] Zhang Yunjie, Zou Kaiqi, Normal Fuzzy Subgroups and Conjugate Fuzzy Subgroups, J. Fuzzy Math., 1(1993), 571-585.
- [8] H.Sherwood, Products of Fuzzy Subgroups, Fuzzy Sets and Systems, 11(1983), 79--89.
- [9] Zhu Nande, The Homomorphism and Isomorphism of Fuzzy Groups, Fuzzy Math. (in Chinese), 2 (1984), 22--27.
- [10] U. M. Swamy and D. V. Raju, Algebraic fuzzy systems, Fuzzy Sets and Systems, 41(1001), 187--194.
- [11] V. D. Dixit, R. Kumar and N. Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems}, 37(1990), 359--371.
- [12] Yunjie Zhang, Kaiqi Zou, A note on an equivalence relation on fuzzy subgroups, Fuzzy Sets and Systems, 95(1998), 243--247.

\end{document}