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Abstract The set FI(R) of all fuzzy ideals of a ring R according to the u(0) for 4 € FIQR) is
discussed. And then the algebraic structure for the classes and the quotient set from the aspects of
lattice,sum w4+ 7, product o7 is studied. The homomorphism and isomorphism relations
between this algebraic system are given.
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1. The partition of fuzzy ideals

Through this paper, R denotes a ring.
Definition 1.1 Let u be a fuzzy subset of R.If forany x,ye R,
(1) u(x=y) 2 p(x) A p(3); (2) p(xy) 2 px) A p(y)
then 4 is called a fuzzy subring of R.
Definition 1.2 Let u be a fuzzy subring of R.If forany x,ye R,
H(xy) 2 w(x) v pu(y)
then u is called a fuzzy ideal of R.

If u is afuzzy subring of R, then £(0)> u(x),xe R.If R has unit element e ,

then u(e) > u(x),xe R,x#0.

The sign FI(R) denotes the set of all fuzzy ideals of R . In FI(R), the relation ~ is
defined as follows: 1~ 7 < u(0)=7(0).

It is not difficult to verify that ~ is a equivalence relation of FI(R).
If FI,(R)={u|peFI(R) and u(0)=1t}, then the partition determined by ~ is
{FI,(R) |t [0,1]}.

2. Algebraic structure of F/,(R)

In this section, algebraic structure of FI (R) is studied from three aspects:

addition of fuzzy sets of lattice, ring and multiplication of fuzzy sets of ring.



Theorem 2.1"! Inclusion relation < of FI (R) concerning fuzzy set forms
complete lattice. It is denoted by (FI(R),v,A).

Definition 2.1 Let 4 and 77 be fuzzy sets of R. Addition y+7 is defined as
follows: u+m)=v{EWMAn(z)|y+z=x},xeR.

Theorem 2.2 FI(R) with regard to addition of fuzzy sets form unit semigroup. It

is denoted by (FI,(R),+) and its unit element is L -

Theorem 2.3" FI,(R) concemning inclusion relation < of fuzzy set forms
complete modul lattice. It is denoted by (FI,(R),v,A) and uvn=u+n.

Theorem 2.4 FI,(R) with regard to addition of fuzzy sets form unit semigroup. It
is denoted by (FI,(R),+) and its unit element is L, -
Definition 2.2! Let u and n be fuzzy sets of R. Product gon is defined as

follows
(oM@ =VANL (M) A e N, 2, =3},

Theorem 2.5 FI (R) with regard to multiplication pon of fuzzy sets form
semigroup. It is denoted by (F7,(R),0). If R have unit element ,then (FI,(R),0) isa
unit semigroup and its unit element is Ty -

Theorem 2.6 FI(R) with regard to multiplication pon of fuzzy sets forms
semigroup. It is denoted by (FI(R),0). If R have unit element ,then (FI(R),0) is a

unit semigroup and its unit element is L, -

3. Relations of among different equivalent classes

Let u be a fuzzy subset of R and a a positive real number. If for any x€ R,
we have a(x(x)) € [0,1] then a and 7 are called multiplified and their product au is
defined: (au)(x) = a(u(x)),xe R.

Lemma 3.1 Let a be a positive real number and b, €[0,1],i € 1,1 any subscript
setand ab, €[0,1]. Then a(v _,b,)=v,, (ab,).
Theorem 3.2 Let s, €[0,1]. Then
(1) (FI,(R),v,A) = FI,(R),v,n), (2) (FI,(R),+) = (FI,(R),+),



(3)(FI,(R),0) = FI,(R),0).
Proof: The map f from FI (R) to FI (R) is defined as follows:
S FI.(R)y—> FIL(R), u—(t/s)u.
For y1e FI (R), itis obvious that t/s and y are and (t/s)u e FI (R).Itis not
verify that f is a’bimorphism from FI (R) to FI,(R).
(1) V u,ne FI_(R),
fuvm =@/sXuvm) =/ ¢/ sm) = f(W)v f@n),

Funm)y=Q@/s)unan) =t/ AWt!s)n)= f(u)Af(),
therefore, FI (R),v,A)= FI,(R),v,A).

(2) VuneFI (R), xeR,
FQ+m)) = (/) + )6 = (¢ )+ 7))
= (1 5)(v {u(x) An(x,) | x, +x, = x})
=V At/ )ux)) At 5)n(x,)) | 3, +x, = x})
=V At/ ) (x) At $)m)(x,) | x, +x, = x})
=(/s)p+ @/ s)ymx)=(f () + F(m)(x),
therefore, (FI (R),+) = (FI,(R),+) and f keeps unit element, that is
S(sy) = ftyg).
(3) Vu,ne FI(R), xeR,
S(pom(x) = ((t/s)(uom)(x) = (t/ s)((u 0m)(x))

= (@1)(V A AL @) AnE) ne N, Y yz, = 1))

i=1

=V S AL ) AT IneN, Y yz =3}

=V ACAL @/ 9) A (@ 9InE ) ne N, 3 y,z, =)

=((/s)w)o((t/s) m)(x)=(f (1) o f(M)x),
therefore, f(uomn)=f(u)of(n),thatis FI (R),0) = FI,(R),0).

If R has unit element, it is not difficult to verify that f keeps one, that is
f(s{e)) = f(t(e))'



4 Algebraic structure of quotient set F/(R)/ ~

Algebraic operations on FI(R)/ ~ are induced by making use of algebraic
operations on FI(R) in this section, and the structure of FI(R)/~ concerning these
algebraic operations is discussed.

For ue FI (R) » [#4] denotes equivalent class that 4 belongs to with regard of
equivalent relation ~ .

Theorem 4.1 The following definition are algebraic operations on FI(R)/ ~

W) [elvinl=luval; @ [uAlnl=[pAn);

G) [ul+Im=[u+nl; (4 [ulolnl=[uomn].

Theorem 4.2 FI(R)/ ~ forms complete lattice with regard of two operations
(1) ,(2) of Theorem 4.1. It is denoted by (FI(R)/ ~,v,A), and

(FI(R),v,A) ~(FI(R)! ~,v,A).
Theorem 4.3> FI(R)/ ~ forms unit semigroup with regard of addition of Theorem
4.1 (3). It is denoted by (FI(R)/ ~,+), unit element is and
(FI(R),+)~(FI(R)/ ~,+).
Theorem 4.4 FI(R)/ ~ forms semigroup with regard of multiplication of
Theorem 4.1(4). It is denoted by (FI(R)/ ~,0), and
(FI(R),0)~(FI(R)! ~,0).
If R has unit element e, FI(R)/ ~ has unit element [1,,,] and the homomorphism

above keeps unit element.
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