The Partition of All Fuzzy Ideals of Ring R and Their Algebraic Structure #### LI Xiao-zhong (Department of Computer Science, Liaocheng Teachers University, Liaocheng 252059) **Abstract** The set FI(R) of all fuzzy ideals of a ring R according to the $\mu(0)$ for $\mu \in FI(R)$ is discussed. And then the algebraic structure for the classes and the quotient set from the aspects of lattice, sum $\mu + \eta$, product $\mu \circ \eta$ is studied. The homomorphism and isomorphism relations between this algebraic system are given. Keywords Fuzzy ideal, Equivalence relation, Class, Quotient set, Semigroup, Lattice #### 1. The partition of fuzzy ideals Through this paper, R denotes a ring. **Definition 1.1** Let μ be a fuzzy subset of R. If for any $x, y \in R$, (1) $$\mu(x-y) \ge \mu(x) \land \mu(y)$$; (2) $\mu(xy) \ge \mu(x) \land \mu(y)$ then μ is called a fuzzy subring of R. **Definition 1.2** Let μ be a fuzzy subring of R. If for any $x, y \in R$, $$\mu(xy) \ge \mu(x) \lor \mu(y)$$ then μ is called a fuzzy ideal of R. If μ is a fuzzy subring of R, then $\mu(0) \ge \mu(x)$, $x \in R$. If R has unit element e, then $\mu(e) \ge \mu(x)$, $x \in R$, $x \ne 0$. The sign FI(R) denotes the set of all fuzzy ideals of R. In FI(R), the relation \sim is defined as follows: $\mu \sim \eta \Leftrightarrow \mu(0) = \eta(0)$. It is not difficult to verify that \sim is a equivalence relation of FI(R). If $FI_t(R) = \{\mu \mid \mu \in FI(R) \text{ and } \mu(0) = t\}$, then the partition determined by \sim is $\{FI_t(R) \mid t \in [0,1]\}$. #### 2. Algebraic structure of $FI_{i}(R)$ In this section, algebraic structure of $FI_{t}(R)$ is studied from three aspects: addition of fuzzy sets of lattice, ring and multiplication of fuzzy sets of ring. **Theorem 2.1**^[1] Inclusion relation \leq of FI(R) concerning fuzzy set forms complete lattice. It is denoted by $(FI(R), \vee, \wedge)$. **Definition 2.1**^[1] Let μ and η be fuzzy sets of R. Addition $\mu + \eta$ is defined as follows: $(\mu + \eta)(x) = \bigvee \{\mu(y) \land \eta(z) \mid y + z = x\}, x \in R$. **Theorem 2.2** FI(R) with regard to addition of fuzzy sets form unit semigroup. It is denoted by $(FI_t(R),+)$ and its unit element is $1_{\{0\}}$. **Theorem 2.3**^[3] $FI_{\iota}(R)$ concerning inclusion relation \leq of fuzzy set forms complete modul lattice. It is denoted by $(FI_{\iota}(R), \vee, \wedge)$ and $\mu \vee \eta = \mu + \eta$. **Theorem 2.4** $FI_{\ell}(R)$ with regard to addition of fuzzy sets form unit semigroup. It is denoted by $(FI_{\ell}(R),+)$ and its unit element is $t_{\{0\}}$. **Definition 2.2**^[2] Let μ and η be fuzzy sets of R. Product $\mu \circ \eta$ is defined as follows $$(\mu \circ \eta)(x) = \bigvee \{ \bigwedge_{i=1}^{n} (\mu(y_i) \wedge \eta(z_i)) \mid n \in \mathbb{N}, \sum_{i=1}^{n} y_i z_i = x \}.$$ **Theorem 2.5** $FI_{\iota}(R)$ with regard to multiplication $\mu \circ \eta$ of fuzzy sets form semigroup. It is denoted by $(FI_{\iota}(R), \circ)$. If R have unit element, then $(FI_{\iota}(R), \circ)$ is a unit semigroup and its unit element is $t_{\{e\}}$. **Theorem 2.6** FI(R) with regard to multiplication $\mu \circ \eta$ of fuzzy sets forms semigroup. It is denoted by $(FI(R), \circ)$. If R have unit element, then $(FI(R), \circ)$ is a unit semigroup and its unit element is $1_{\{e\}}$. ## 3. Relations of among different equivalent classes Let μ be a fuzzy subset of R and a a positive real number. If for any $x \in R$, we have $a(\mu(x)) \in [0,1]$, then a and η are called multiplified and their product $a\mu$ is defined: $(a\mu)(x) = a(\mu(x)), x \in R$. **Lemma 3.1** Let a be a positive real number and $b_i \in [0,1], i \in I, I$ any subscript set and $ab_i \in [0,1]$. Then $a(\vee_{i \in I} b_i) = \vee_{i \in I} (ab_i)$. **Theorem 3.2** Let $s, t \in [0,1]$. Then $$(1) (FI_s(R), \vee, \wedge) \cong FI_t(R), \vee, \wedge), \qquad (2) (FI_s(R), +) \cong (FI_t(R), +),$$ $$(3)(FI_s(R), o) \cong FI_t(R), o)$$. **Proof**: The map f from $FI_s(R)$ to $FI_s(R)$ is defined as follows: $$f: FI_s(R) \to FI_t(R), \ \mu \to (t/s)\mu$$. For $\mu \in FI_s(R)$, it is obvious that t/s and μ are and $(t/s)\mu \in FI_t(R)$. It is not verify that f is a bimorphism from $FI_s(R)$ to $FI_t(R)$. (1) $$\forall \mu, \eta \in FI_s(R)$$, $$f(\mu \vee \eta) = (t/s)(\mu \vee \eta) = ((t/s)\mu) \vee ((t/s)\eta) = f(\mu) \vee f(\eta),$$ $$f(\mu \wedge \eta) = (t/s)(\mu \wedge \eta) = ((t/s)\mu) \wedge ((t/s)\eta) = f(\mu) \wedge f(\eta),$$ therefore, $FI_s(R), \vee, \wedge) \cong FI_s(R), \vee, \wedge$. (2) $$\forall \mu, \eta \in FI_s(R), x \in R,$$ $$f(\mu + \eta)(x) = ((t/s)(\mu + \eta))(x) = (t/s)((\mu + \eta)(x))$$ $$= (t/s)(\vee \{\mu(x_1) \wedge \eta(x_2) \mid x_1 + x_2 = x\})$$ $$= \vee \{((t/s)\mu(x_1)) \wedge ((t/s)\eta(x_2)) \mid x_1 + x_2 = x\})$$ $$= \vee \{((t/s)\mu)(x_1) \wedge ((t/s)\eta)(x_2) \mid x_1 + x_2 = x\})$$ $$= ((t/s)\mu + (t/s)\eta)(x) = (f(\mu) + f(\eta))(x),$$ therefore, $(FI_s(R),+) \cong (FI_t(R),+)$ and f keeps unit element, that is $f(s_{\{0\}}) = f(t_{\{0\}})$. (3) $$\forall \mu, \eta \in FI_{s}(R), x \in R,$$ $$f(\mu \circ \eta)(x) = ((t/s)(\mu \circ \eta))(x) = (t/s)((\mu \circ \eta)(x))$$ $$= ((t/s)(\vee \{ \wedge_{i=1}^{n} (\mu(y_{i}) \wedge \eta(z_{i})) | n \in N, \sum_{i=1}^{n} y_{i}z_{i} = x \})$$ $$= \vee \{ (t/s)(\wedge_{i=1}^{n} (\mu(y_{i}) \wedge \eta(z_{i}))) | n \in N, \sum_{i=1}^{n} y_{i}z_{i} = x \}$$ $$= \vee \{ (\wedge_{i=1}^{n} ((t/s)\mu(y_{i}) \wedge ((t/s)\eta(z_{i})) | n \in N, \sum_{i=1}^{n} y_{i}z_{i} = x \}$$ $$= ((t/s)\mu) \circ ((t/s)\eta)(x) = (f(\mu) \circ f(\eta))(x),$$ therefore, $f(\mu \circ \eta) = f(\mu) \circ f(\eta)$, that is $FI_s(R), o) \cong FI_t(R), o$. If R has unit element, it is not difficult to verify that f keeps one, that is $f(s_{\{e\}}) = f(t_{\{e\}})$. ### Algebraic structure of quotient set $FI(R)/\sim$ Algebraic operations on $FI(R)/\sim$ are induced by making use of algebraic operations on FI(R) in this section, and the structure of $FI(R)/\sim$ concerning these algebraic operations is discussed. For $\mu \in FI(R)$, $[\mu]$ denotes equivalent class that μ belongs to with regard of equivalent relation ~ . **Theorem 4.1** The following definition are algebraic operations on $FI(R)/\sim$ - (1) $[\mu] \vee [\eta] = [\mu \vee \eta];$ (2) $[\mu] \wedge [\eta] = [\mu \wedge \eta];$ - (3) $[\mu] + [\eta] = [\mu + \eta];$ (4) $[\mu] \circ [\eta] = [\mu \circ \eta].$ **Theorem 4.2** $FI(R)/\sim$ forms complete lattice with regard of two operations (1),(2) of Theorem 4.1. It is denoted by $(FI(R)/\sim,\vee,\wedge)$, and $$(FI(R),\lor,\land)\sim(FI(R)/\sim,\lor,\land)$$. **Theorem 4.3** $FI(R)/\sim$ forms unit semigroup with regard of addition of Theorem 4.1 (3). It is denoted by $(FI(R)/\sim,+)$, unit element is and $$(FI(R),+)\sim (FI(R)/\sim,+)$$. **Theorem 4.4** $FI(R)/\sim$ forms semigroup with regard of multiplication of Theorem 4.1(4). It is denoted by $(FI(R)/\sim,0)$, and $$(FI(R),0)\sim (FI(R)/\sim,0)$$. If R has unit element e, $FI(R)/\sim$ has unit element $[1_{\{e\}}]$ and the homomorphism above keeps unit element. #### References - 1 N.Ajmal, K.v. Thomass. The lattices of fuzzy ideals of a ring. FSS, 1995(74):371~379 - 2 Yandong Yu, Zhudeng Wang. TL-subrings and TL-ideals .Part 1.Basic concepts. FSS,1994(68):93~103 - 3 Qingde Zhang, Guangwu Meng. On the lattice of fuzzy ideals of a ring. FSS, 2000 - 4. Changliu Hu, Zhenming Song. Foundation on lattice theory. Kaifeng:Henan University Press, 1990(in Chinese)