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Abstract

Paper deals with singular classes of similar fuzzy implications and describes
the lattice of all invariant fuzzy implications.
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1 Introduction

In fuzzy set theory we deal with binary operations in unit inter-
val as triangular norms, triangular conorms and fuzzy implications.
Equivalence classes of such operations are characterized by similarity
relation. Similar elements are constructed by formula

T*(xay) = T;(:L‘,y) = 90—1(T(90($)790(y)))’ for z,y € [07 1]’

where ¢ is an increasing bijection on unit interval. For special ope-
rations such constructed T™* element coincides with T. For example
t-norm minimum or s-norm maximum give

min* = min, maz* = max.

The problem arises about existence and properties of such selfsimi-
lar operations. Here we consider this problem for fuzzy implication.
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2  Fuzzy implications

Fuzzy implications are described and examined in many ways
(cf. Baldwin, Pilsworth [4], Cordén, Herrera, Peregrin [5], Dubois,
Prade [6], Fodor, Roubens [8] or Kiszka, Kochariska, Sliwiriska [11]).
We use here the simplest definition of fuzzy implication presented by
Fodor and Roubens [8].

Definition 1. Any function I: [0,1]2 — [0,1] is called fuzzy implica-
tion if it fulfils the following conditions:

. Yoy ey (& < 2= I(2,y) 2 I(2,y)),
12. Vo yzeon (¥ < 2 = I(x, y) < I(z,2)),
I3. Ve, 1(0,
4. Voep i (2,
I5. 1(1,0) = 0.

y) =
1) =
Set of all fuzzy implications will be denoted by F1I.

The cited notion of fuzzy implication fulfils two important condi-
tion: Firstly, it is a generalization of classical implication, it means
that I fulfils the implication truth table:

1(0,0) = I(0,1) = I(1,1) = 1,I(1,0) = 0. (1)

Secondly, I is decreasing with respect to the first variable and increas-
ing with respect to the second variable. Using additional assumptions

we can characterize similarity classes of fuzzy implications (cf. Smets,
Magrez [13] or Baczynski [1]).

Definition 2 ([10], Chapter 8). Fuzzy implications I,J € FI are
conjugate if there exists a bijection ¢: [0,1] — [0,1] such that J = I,
where

I'(z,y) = L(2,y) = ¢ (I(p(z), 0(y))),  forz,y €[0,1]. (2)



Let & denote the family of all increasing bijections ¢: [0,1] — [0,1]
and I, J € FI. Fuzzy implication J is $-conjugate with I if
3 (J=I). (3)

peD

Fuzzy implication I is called selfconjugate (P-selfconjugate) if
V I=1). (4)

pEP

Our problem is to desribe family of all selfconjugate fuzzy implica-
tions.

3 Invariant domains

We need an auxiliary notion of invariant set or invariant domain. It
is invariant with respect to the family of bijections. However this no-
tion is too general. There exist over two thousands different invariant
domains. So we consider a special case: minimal invariant domains.
It is such nonempty domain, which doesn’t have a proper subdomain.

Definition 3. Set D C [0,1]? is invariant with respect to & (invariant
domain) if F(D) = D, where

F(z,y) = (p(2), ¢(y)), ¥ € P, 2,y € [0,1].

An invariant domain is minimal if it does not contain a proper sub-
domain.

The first important result describes minimal invariant domains.

Theorem 1. There exist exactly 11 minimal invariant domains in
[0, 1]%:

Dy = {(Oa 1)}’ D, = {(07 1)}3 D; = {(150)}7 D, = {(1’ 1)},

Ds = {(x,z) : z € (0,1)}, Dg = {0} x (0,1), D7 = {1} x (0,1),

Dg = (0,1) x {0}, Dy = (0,1) x {1},

DlO = {(x,y) 1T E (Oal)a 0< y< .’E},

Dy ={(z,y):x € (0,1), z <y < 1}.

Every invariant domain is a sum of minimal domains.
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Minimal invariant domains are numbered in such order: first, we
have four single domains, next, we have five segment domains, last, we
have two triangle domains. They are depicted in symbolical Figure 1.
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Fig.l. Minimal invariant domains D; — Dy;y.

4 Invariant implications

Now we return to fuzzy implications.

Theorem 2. Family of all selfconjugate fuzzy implications is finite
and consist of 18 implications I, — I1g of the form:

1 , ifzx € A
Ik(xay) =\Y > Zf(L' € Bk ’ (5)
0 , ifxeCy

where z,y € [0,1], and Ay, Bi,Ci,k = 1,2,...,18 are the invariant
domains.

Theorem 2 brings two important results. Firstly, we see that the
family of such implications is finite. Secondly, selfconjugate implica-
tion on invariant domain can be constant or equal to identinty with
respect to the second variable. It is the meaning of formula (5). Exact



description of invariant domains A, B and C can be seen from full list
of constructed implications:

L(z,y) = 1 ,ifr<lory>0 (6)
"OYZY0 fe=landy=0’
1 ,ifz<1

I2($’y) = {y fr=1 ) (7)
I(z,y) 1 ,ifz=00ry>0 (8)
X, = . 3
WY 0 ,ifr>0andy=0

1 ,ifz<lory=1

Ii(z,y) = ) 9
4(z:9) {0 Jifz=1landy<1 (9)

1 ,ifz<landy>0orz=0
Iiz,y) =qy ,ifz=1 ) (10)
0 ,ifz>0andy=0

1 ,ifz<landy>0orz=0o0ry=1
0 ,ifr=1landy<lorz>0andy=0’

IG(x’y) = {

1 ,ifzgy
y ,ifz>y’

I7(.’B,y) = {

1 ,ifz<y

Liz,y)=Qy ,ify<z<l , (13)
0 ,ffz=1landy<1

1 ,ife<yorz=0

: 14
y ,ifyzxandz >0 (14)



IIO(xa y) = {

1 ,ife<yorz=0o0ry=1
Li(z,y)={y ,ifyKzandl<z<1
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1 ,ifzgy
0 ,ifz>y’

0 ,ifr=1landy<1

112($ay) =
(1
Ls(z,y) =y
0
4
La(z,y) =Qy
0
115($ay) = {

Lig(z,y) =

{

9

9

?

9

Y

9

1

y
0

1 ,ifz=0
y ,ifz>0’

fr<yorz=0

ifr=yandz >0,

ifz>y

ifr=0o0ry=1
ifl<z<l1
ifr=1landy<1

1 ,ifer<yorz=0ory=1

,ifxr=0
,if0<z <y,
,ifx>y

1 ,ifz=00ry=1
Li(z,y) =y ,if0<z<y<]l

0 ,ifz>yorz=yandl<z<l1

I18($9y) = {1

where z,y € [0, 1].

,ifr=00ry=1
0 ,ifz>0andy<1’

9

0 ,ife>yorz=yand0<z<l’

(15)

(16)

(19)

(20)

(21)

(22)

(23)



5 Lattice of implications

Now we examine order relation between invariant implications.

Theorem 3 ([2]). Set of all selfconjugate fuzzy implications is a dis-
tributive lattice.

Theorem 4. Selfconjugate fuzzy implications (6)-(23) form the lat-
tice presented in Fig.2. This lattice is generated by implications: I,
Iy, o, Do, 15 and Ig.

Fig.2. Lattice of fuzzy implications (6)-(23).



The above numbering of invariant implications is connected with
Hasse diagram of this lattice. Implications are numbered from the top
to the bottom, and from the left to the right. So I; is the greatest
element, and I3 is the least element.

6 Contrapositive implications

An important class of fuzzy implications is distinguished by the
contraposition principle.

Definition 4 ([8]). Implication I € F1I is called contrapositive if
I(l—y,l—x)=[(x,y), .’E,yE[O,].]. (24)

Theorem 5. Contrapositive elements of the lattice from Theorem 3
are all comparable and form the chain:

Iig € Iis < o < I < . (25)

7 Remarks

Family of the above presented fuzzy implications will be examined
later in connection with fuzzy logic and approximate reasoning. Using
equivalence relation (3) we obtain conjugacy classes of fuzzy implica-
tions and condition (4) describes singular classes (cf. [3]).

Remark 1. Some of constructed fuzzy implications were presented
in papers on fuzzy and multivalued logic. E.g. implications I; and I
appeared in [7], I; was presented in [5], I; is Godel’s implication [9]
and Iy was presented by Rescher [12], p.47.

From the measure point of view, change of values on single element
domain, or in segment domain is not important. From this point of
view e have only 6 important models of invariant implications.



Definition 5. Fuzzy implications I, J € FI are near if they coincide
on Dyg and Dy;. Then we write I ~ J.

Remark 2. There are six classes of invariant implications in the sense
of Definition 5. Namely

L~nh~ I3~ Iy~ I~ I,

I ~ Ig ~ Iy ~ Iy, I1g ~ Itz ~ I3,

Ly ~ Iy, It ~ Iz, L.

From this point of view only implicationslis,l1¢ and I bring new
models (cf. Remark 1).
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