70

Finite Power Property of Fuzzy Regular
Language®

Bai Minggiang MoZhiwen
(Department of Mathematics of Sichuan Normal University, Chengdu 610066)

Mazrch 16, 2000

Abstract:In this paper the finite power property of fuzsy finite regular lan-
guage has been introduced,and a serial of properties about it have been obtained.

Keywords:Fuzzy regular language,Fuzzy finite automaton,Finite power prop-
erty,Fuzzy language

Article ID:0235

0 Introduction

Since E.T.Lee and L.A.Zadeh have given the concept of fuzzy finite-state an-
tomaton in 1969(! there are some researches about it. But the researches about
fuzzy regular language are little because it is difficult and challenging. In this paper
the concept of finite power property of fuzzy regular language is given at first and
the researches about it have been done preliminaryly.

1 Basic concepts

Definition 1.1 A fuzzy regular language L possesses the finite power property (in
short,FP) if the set

{L'li=0,1,2,..}

is finite.

Definition 1.2 The order of a fuzzy regular language L is the smallest integer k
satisfying L¥ = L*¥t1, if no such k exists we say the order of L is co.

The following simple lemtna deals with the interconnections between the notions
just defined.

Lemma 1.3 The following conditions (i)-(iii) are equivalent for a nonempty fuzzy
regular language L:(i) L possesses FP;(ii)there is an integer k such that L is of order
k;(iii)there is an integer k such that L* = L*. '

Proof:First observe that each of the conditions (i)-(iii) implies that (A,1)€ L be-
cause,otherwise,for all integer i, the shortest word in L’ is shorter than the shortest
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word in Li*1.Hence,each of the conditions (i)-(iii) immediately follows.Observe,in
particular,that condition (i) implies that L¥ = Lkt hold for all integer i.

Every fuzzy star language,i.e. a fuzay regular language of the form L* ,possesses
FP.In fact the order of such a language equals 1.

Definition 1.4 Let G is a fuzzy finite automaton,the iterate G* of G is the fol-
lowing finite automaton,where the set of states of G* equals that of G added with
a state denoted by I(for “iterate’),the initial and final states in G equals the corre-
sponding items in G.All transitions of G are presented also in G* and G* has the
following transition to and from the new state L.

Whenever there is a transition in G from a state q to a final state, labeled by a
and membership p of a,then there is a transition in G* labeled by a and u from q
to L Whenever there is a transition labeled by a and g in G from the initial state
to a state q,then there is a transition in G* labeled by a and u from I to q.

Lemma 1.5 (L(®))* = L(G*) U {(\, 1)}

Proof: The result is an immediate consequence of the definition of G*.Consider
a word w # ) such that (w,p) € (L(G))* It can be written as

W = Wiw2...Wn

where (w;, ;) € L(G) for i=1,2,...,n and p = py A piz A+ A\ pin.For i < njthereis a
path in G* from the initial state to I labeled by wywa...wi and g3 A p2 A- -+ Api,and
consequently, we can start all over again in G,showing that (w,p) € L(G*).

On the other hand,whenever there is a path in G* from the initial state to 1
labeled by w and u,by the definition of G* then (w, #) € (L(G))*.By the definition
of G* every word in L(G") is in (L(G))".It is obvious that (A1) ¢ L(G™).Hence
(LG = L(G) U {(A D}

2 Main Results

Definition 2.1 The iteration number of a word w such that (w,u) € L(G*),in
symbols I N(w),is the smallest integer k such that there is a path labeled by w and
p from the initial state to a final state in G ,and passing k times through the state
1.

Lemma 2.2 Let w is nonempty word with membership  in (L(G))* and IN(w) =
kthen w is in (L(G))**! but not in any (L(G))' with i < k+ 1. Proof:
By the definition of G*,we can be expressed as w = wWi1W2..Wk+1 where (w,p) €

k41
(L(G))*, (wi, i) € L(G) and pp = ./_\1 pi-Thus (w, ) € (L(G))**1.
Assume w can be written as w = Y1y2..Viri < k + 1, where (w,p) €
(L(G))*, (yj»pi) € L(G) and p = /'\ pj.Because G represents L(G),we obtain
j=1

by the former a path in G* from the initial to a final state and labeled by w and
4 but passing only i-1 times through the state 1.Since ¢ — 1 < k,this condition
contradicts the fact that IN(w) = k.

Remark:Because G* is nondeterministic,given a word w,there may be several
paths starting with the initial state of G* and labeled by w and membership p of
w.
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Let START(w) be the set of states ¢ # I in G” such that there is a path in
G from the initial state to q labeled by w and p,and let END(w) be the set of all
states ¢ # I in G* such that there is a path in G* from q to one of the final state
labeled by w and p.

Lemma 2.3 Assume that a nonempty word w in (L(G))" can be decomposed as
w = wiwa,then START(w1)NEN D(w2) is nonempty.Conversely,whenever START(w1)N
END(w;) is nonempty for a word w = wiws,then w is in (L(G))".

Proof:The result is an immediate consequence of lemma 1.5 and the definition
of START(w) and END(w).

Lemma 2.4 Assume that a nonempty word w = zyz satisfies (w, ) € ey
such that START(x)=START(xy) and END(z)=END(yz),then if L(G) possesses
FP,there are states q and ¢ in START(x)N END(z) such that there is a path in G
from q to q' labeled by y and membership u; of y.

Proof:By lemma 2.3 and the given conditions,the intersection START(x) N
END(z) is nonempty.

Assuming that whenever q and ¢ are in START(x)N END(z), there is no path
from q to ql labeled by y and p2. It is a consequence of the known conditions that

START(x) = START(zy') and END(z) = END(z) for all i and j.

This fact implies by lemma2.3 that (zy'z, u) € (L(G))" for every i, Where (z, 1) €
(L(G))*, (2, 43) € L(G) and p = pr A pa A pia- '

On the other hand our assumption implies that,for all iL,IN(zy'z) > i.But this
fact and lemma 2.2 imply that for any k,we can find a word in the (L(G))" which
is not in (L(G))*.This conclusion contradicts the fact that L(G) possesses FP.

For the following proof, now we define some new things.We use #S to de-
note the cardinality of a finite set S.The order of a word w in (L(G))" is defined
by o(w) = min{k|(w, p) € (L(G))"}.For (w, p) € (I(G))*,we define PAIRS(w) =
{(S, S')Iw = zy, START(z) = S,END(w) = S’ for some x and y(possible empty)}
aud WORST(w)=(i),where i = maz{#8+#S|(S, S') in PAIRS(w)}=#{(8,S)
in PAIRS(w)|#S+#S' = i}. Let b, be the greatest number among the bino-
mial cofficients Ci, and o(i,§) = maz{o(w)|(w,p) € (L(G))* and WORST(w) <
(8,5)}r0(d) = o(t, b ).

Lemma 2.5 Assume that L(G) possesses FP and thati> 3 and j > 3 are numbers
satisfying 2 < ¢ < 2n and 1 < j < b,.Then

a(i,j) <o(i— 1) +o(4,j —1)+3

Proof: If there is no word (w, ) € (L(G))* such that WORST(w) = (4, j),then
of(ij)=o0(i,j-1).Consequently the conelusion is satisfied.

Hence,to prove the lemma,we need to show that an arbitrary w with property
WORST(w) = (i,]) satisfies

O(iaj) _<_0(';’— 1)+0(£»j - 1) +3

Lot w = 221 where (@, 1) € (L(G))",(3y13) € (L(G))" (21, 12) € L(G)p =
pix A\ 2, #(START (x))+#(END( 2z1))=i and x is the shortest prefix of w with this
property.We denote START(z) = S, EN D(z)) = §' .We next write 2 = yz where
(9, 11,) € L(G), (2, 42) € L(G), pz = py A\ pia, START(2) = START(zy) = § and
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END(yz) = END(z) = § " and z is the shortest suffix of z; with this property.Thus
w = zyz. It is possible that one or two of words x,y and z equal A

By lemma2.4,there are states q and g in8nN S’ such that there is a path from q
to ¢ labeled by y and I"1 in G. Now we extend this path to a path from the initial
state to a final one as follows.

Let u be a suffix of x such that there is a path in G from the initial state to q
labeled by u and pz,where (wl,p.;) € L(G), (u, p3) € L(G) and py = ps A pta. Let
v be a prefix of z such that there is a path in G from q' to a final state by v and
fty Where (v,pg) € L(G),(wz,,u;') € L(G) and hy = /L;/\p:.Thus T = Wi,z =
Ywa,w = wiuyvws for some words wy and w; in (L(G))*.The existence of uand v is
guaranteed by the fact that w is in (L(G))*-Moreover,(uyv, pia A\ iy A\ ) € L(G).
It is possible that one or both of the words u and v are empty.

Because (uyv, g A gy A ptg) € L(G) and olw'w") < o(w') + o(w"), we obtain
o(w) < o(w1) + 1+ o(w2).

Hu# Mowi) < ofi —1); If u=X and wy # A, we write x=w; = w3wa,
where (w3, 3) € (L(G))*, (wa,p4) € L(G) and py = p3 A\ pa. This shows that
o(wy) < o(i — 1) + 1,then if wy = Ait is hold that o{wy) <ofi —1)+ 1.

If v # A\o(ws) < o(i,j —1); If v = A and w2 # A,we write w,; = wswe,Where
(s, ps) € (L(G))', (we,pe) € L(G) and py = ps Ape,ws # Athen olws) <
o(i,7 — 1) + 1.This hold when wz = A.

Hence the lemma holds.

Lemma 2.6 Assume that L(G) possesses FP and that i > 3 satisfies 2 < 1 <
n.Then o(i,1) < o(i — 1)+ 3.

Proof:When consiodering w; in the lemma 2.5,0(i-1) rather than o(i,j-1) appears
in the upper bound.Hence the lemma is previously hold. '

Lemma 2.7 If L(G) posseses FP,then o(2) < 1.

Proof:If there are no words (w, ) € (L(G))* such that the first component in
the WORST (w) equals 2,the result o(2)=1 by the definition.

Consider an arbitrary (w,s) € (L(G))*,w # A such that the first component in
WORST(w) equals 2.This condition implies by lemma 2.3 that,for any decomposi-
tion w = wiwa, where (w1, 1) € (L(G))*, (w2, p2) € L(G), pp = A p2, START(w1)N
END(w;) consists of exactly one state.Consequently,for any path p labeled by w
and p in G* starting from the initial state and passing through the state Ithere is a
path labeled by w and p in G starting from the initial state and ending at the same
state as p. This means that (w,p) € L(G) and hence o(w) = 1.Since o(A) = 0,the
lemma holds.

Theorem 2.8 Assume that L(G) is a fuzzy regular language represented by
a finite deterministic automaton with n states.Then there is an integer ¢, effec-
tively computable from n such that L(G) possesses FP if and only if (L(G))°» =
(L(G))* .Consequently,the FP problem is decidable.Moreover there is an algorithm
for determining the order of a given fuzzy regular language.

Proof: Assume that L(G) possesses FP,by lemma 2.5,for any i such that 3 <
i< 2n.

o(i) = o(i,ba) < 0(i — 1) + 3 + o(é, bn — 1)
< 2(o(i — 1) + 3) + (6, ba — 2) < -
< (by — 1)(0(i — 1) +3) +0(3,1)
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< (bn + 1)(0(i— 1) +3) < 4(ba + 1)o(i, 1)
Now we denote an = 4(bs + 1) and ¢, = a2"~2.Consequently for any 3 < i <
n,0(1) < a,o(i — 1).Hence

o(2n) < ago(2n —1) < aZo(2n - 2) < ... < aZ*~20(2) = cno(2) < cn

Since the order of every word (w,p) € (L(G))* at most o(2n),then (L(@))C~
(L(G))* .Consequently,we can solve the FP problem as follows. Given L(G),we
first compute Cp.we then test whether or not (L(G))°~ = (L(G))" hold. The order
of a given fuzzy regular language L(G) can be determined as follows.We first decide
by the method given above whether or not L(G) possess FP. If L(G) does not pos-
sess FP,it is of infinite order by lemma 1.3,otherwise,we test fork = 0, 1,2, ...whether
or not (L(G))* = (L(G))**1. This sequence of tests terminates because L(G) pos-
sesses FP. The order of L(G) is the smallest k satisfying (L(G))* = (L(G))**1.

i
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