Fuzzy Implication Ideals in N(2,0) Algebras

Wang Hongwei Wang Jianmin Li Guangqin (Department of Mathematics Lin yi Teachers College Shandong 276005, P. R. China)

Abstract: In this paper we gave fuzzy implication ideals of N(2,0) algebras and studied basic properties of its

Keywords: N(2,0) algebras Fuzzy implication ideals

1. Preliminaries

Definition 2.1 An algebraic system (S, *, 0) of type (2,0) is called N(2,0) algebras if it satisfies the following conditions for any $x,y,z \in S$

$$(N_1) x * (y * z) = z * (x * y);$$
 $(N_2) 0 * x = x.$

Remark Let (S, *, 0) be a N(2, 0) algebra, then the following identities hold for any $x, y, z \in S$

(1)
$$x * y = y * x;$$
 (2) $(x * y) * z = x * (y * z);$

(3)
$$x * (y * z) = y * (x * z), (x * y) * z = (x * z) * y;$$

(4) 0 is unit element.

Then N(2,0)algebra is a monoid semigroups.

Definition 2. 2 Let S be a N(2,0) algebra, a nonempty subset I of S is called a ideal of S if it satisfies the following conditions

$$(I_1)$$
 $0 \in I$; (I_2) $x \in I, x * y \in I \rightarrow y \in I$ for any $x, y \in S$

Definition 2. 3 Let S be a N(2,0) algebra, a nonempty subset I of S is called a implication ideal of S if it satisfies the

following conditions

 (I_1) $0 \in I$; $(IM)z * ((x * y) * x) \in I, z \in I \rightarrow x \in I$, for any $x,y,z \in S$

Definition 2. 4 Let S be a set, A fuzzy set in S is a map $\mu: \rightarrow [0,1]$

Definition 2. 5 Let μ be a fuzzy set in X. For any $t \in [0,1]$, the set $\mu_t = \{x \in X : \mu(x) \ge t\}$ is called a level subset of μ .

Definition 2. 6 Let S be a N(2,0) algebra, a fuzzy set μ in S is called a fuzzy ideal of S if it satisfies the following conditions $(F_1) \mu(0) \geqslant \mu(x), x \in S$,

 $(F_z) \mu(x) \geqslant \min{\{\mu(y*x), \mu(y)\}}, \text{ for any } x,y \in S$

Definition 2. 7 Let S be a N(2,0) algebra, a fuzzy set μ in S is called a fuzzy N-ideal of S if it satisfies the following conditions for all $x,y \in S$

$$\mu(x * (x * y)) \geqslant \mu(x), x \neq 0, \ \mu(0) \geqslant \mu(x).$$

2. Fuzzy Implication Ideals in N(2,0) Algebras

Definition 3.1 Let S be a N(2,0) algebra, a fuzzy subset μ in S is called fuzzy implication ideal of S if it satisfies the following conditions

$$(F_1) \mu(0) \geqslant \mu(x), x \in S,$$

(F-IM) $\mu(x) \ge \min\{\mu(x * ((x * y) * x)), \mu(z)\}$, for all $x, y, z \in S$.

Theorem 3.1 Let S be a N(2,0) algebra, for any $x \in S$, if $x \ne x = 0$, then any fuzzy implication ideal in S is fuzzy ideal of S.

Proof Let z=y and y=x in the Definition 3.1, by (F-IM) we have

$$\mu(x) \geqslant \min\{\mu(y * ((x * x) * x)), \mu(y)\},$$

on the other hand by x * x=0,0 * x=x, we have

$$\mu(x) \geqslant \min\{\mu(y * x), \mu(y)\},\,$$

Therefore (F_2) hold, then μ is fuzzy ideal of S.

Theorem 3.2 Let S be a N(2,0) algebra, if μ is a fuzzy N-ideal of S, then μ is also a fuzzy implication ideal of S.

Proof Because µ is a fuzzy N-ideal of S, then

$$\mu(z*((x*y)*x)) = \mu(x*(x*(z*y))) \geqslant \mu(x),$$

hence

$$\mu(x) \ge \min \{ \mu(z * ((x * y) * x)), \mu(z) \}.$$

Therefore μ is also a fuzzy implication ideal of S.

Theorem 3. 3 Let S be a N(2,0) algebra, then a fuzzy subset μ of S is a fuzzy implication ideal of S if and only if for any $t \in [0,1]$, $\mu(t)$ is a implication ideal of S or $\mu(t)$ is empty.

Proof Assume μ is a fuzzy implication ideal of S,

by (F₁) we have

$$\mu(0) \geqslant \mu(x)$$
, for any $x \in S$.

Therefore

$$\mu(0) \geqslant \mu(x) \geqslant t, x \in \mu_t$$

thus $0 \in \mu$, let $z * ((x * y) * x) \in \mu$ and $z \in \mu$. Then

$$\mu(z*((x*y)*x)) \geqslant t \text{ and } \mu(z) \geqslant t.$$

Since μ is implication ideal of S, hence

$$\mu(x) \geqslant \min\{\mu(z * ((x * y) * x)), \mu(z)\} \geqslant t,$$

then $x \in \mu$, therefore μ , is a implication ideal of S.

Conversely only proof (F₁) and (F-IM) is true.

If (F_1) is not true, then there exists $x' \in S$ such that $\mu(0) < \mu(x')$.

If take $t' = (\mu(0) + \mu(x'))/2$, then

$$\mu(0) < t' \text{ and } 0 \le t' < \mu(x') \le 1.$$
 (1)

Where $x' \in \mu$ and $\mu \neq \emptyset$. Since μ is a implication ideal of S.

We have
$$0 \in \mu_t$$
 and $\mu(0) \geqslant t'$, (2)

Thus, the inequality (2) and (1) are contradiction. Now

assume (F-IM) is not true, then there exists $x', y', z' \in S$, such that

$$\mu(x') < \min\{\mu(z' * ((x' * y') * x')), \mu(z')\}. \text{ let } t' = (\mu(x') + \min\{\mu(z' * ((x' * y') * x')), \mu(z')\})/2, \text{ then } \mu(x') < t' \text{ and } 0 \le t' < \min\{\mu(z' * ((x' * y') * x')), \mu(z')\} \le (3)$$

Therefore $\mu(z'*((x'*y')*x'))>t'$ and $\mu(z')>t'$ then $z'*((x'*y')*x')\in\mu_t$, $z'\in\mu_t$, since μ_t is a implication ideal of S, thus

$$x' \in \mu_t$$
 and $\mu(x') \geqslant t'$. (4)

Thus, the inequality (4) and (3) are contradiction. Then (F_1) and (F-IM) all hold, hence μ is a fuzzy implication ideal of S.

Reference

1.

- [1] O. G. Xi, Fuzzy BCK-algebra, J. Math. Japon. 36(1991), 935~942
- [2] J. B. Jun And J. Meng, Fuzzy p-ideal in BCK-algebra, Math., Japon., 40(1994),271~282
- [3] Samy M. Mostafa, Fuzzy implicative ideals in BCK-algebra, Fuzzy Sets And Systems, 87(1997), 361~368
- [4] Jiang Zhaolin, Deng Fangan. Fuzzy ideals in N(2,0) algebras. BUSEFAL, 78(1999),21~24
- [5] Jiang Zhaolin, Deng Fangan. Wd-Fuzzy Implication Algebras. BUSEFAL, 79(1999),48~53
- [6] Deng Fangan, Jiang Zhaolin, Xu Yang. Fuzzy N(2,0) algebras. BUSEFAL, 73(1997), 39~43