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1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [11] several researches were conducted on
the generalizations of the notion of fuzzy set. The idea of “intuitionistic fuzzy set” was first published
by Krassimir T. Atanassov [1] and many works by the same author and his colleagues appeared in
the literature [2,3,4]. Later topological structures in fuzzy topological spaces [5] is generalized to
“Intuitionistic fuzzy topological spaces” by Coker in [7], and then the concept “intuitionistic set” is
introduced in Coker [8]. This concept is the discrete form of intuitionistic fuzzy set, and it is one of
several ways of introducing vagueness in mathematical objects. In this paper we shall give a brief
introduction to “intuitionistic topological spaces”. Several relevant papers have already appeared in
literature, including [6,9,10]. Notice that, in [9,10], intuitionistic sets are renamed as “intuitionistic
fuzzy special sets”.

2. Preliminaries

Here we shall present the fundamental definitions. The following one is obviously inspired by K. T.
Atanassov [3] and is first given in [8]. For the sake of completeness we shall outline the basic facts:

Definition 2.1. [8] Let X be a nonempty fixed set. An intuitionistic set (IS for short) A is an
object having the form A =< X, A!, A? > where A! and A? are subsets of X satisfying A'N A% = 0.
The set A! is called the set of members of A, while A? is called the set of nonmembers of A.

Every crisp set A on a nonempty set X is obviously an IS having the form < X, A, A° >, and one
can define several relations and operations between IS’s as follows:

Definition 2.2. [8] Let X be a nonempty set, A =< X,A4;,4; > and B =< X, B! B? > be
IS’s on X, and let {A; : i € J} be an arbitrary family of IS’s in X, where A’ =< X, A}, A? >.
(a) ACBiff A' C B and B2C A%, (b) A=Bif ACBand BCA;

(c) AC B iff AU A? D B! uB?; (d) A =< X, A2, Al > ;

(e) UA; =< X,UAL,NAZ > ; (f) N4i =< X,NA} UA? > ;

(g A-B=ANB; () []A =< X, A}, (AY)* > ;

(i) <> A=< X,(A%)°, A% >; ()0 =<X,0,X >and X =< X, X,0 >.

Here are the basic properties of inclusion and complementation:
Corollary 2.3. [8] Let A, B,C and A; be IS’s in X (i € J). Then

(a) Ay C BforeachieJ = UA; CB (b) BC A;foreachi€ J = BCNA;

(c) UA; = NA;, NA; = UA; dyACB&<BCA

(€) (A) =4 NF=Xo, X =0n
Now we shall define the image and preimage of IS’s. Let X, Y be two nonempty sets and f: X - Y
a function.
Definition 2.4. (8] (a) If B =< Y, B!,B? > isan IS in Y, then the preimage of B under f, denoted
by f~1(B), is the IS in X defined by f~(B) =< X, f~Y(B'), f~1(B?) >.
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(b) If A=< X,A!, A? > is an IS in X, then the image of A under f, denoted by f(A), is the IS
in Y defined by f(A) =< Y, f(A!), f-(A?%) >, where f_(A%) = (f((A%)°))°.
Here we list the properties of images and preimages, some of which we shall frequently use in the
following sections:
Corollary 2.5. [8] Let A, A; (i € J) be ISsin X, B, B; (j € K)ISsinY,and f: X > Y a
function. Then
(a) A1 C Ay = f(A1) C f(A2), B C By = f71(B1) C f'(Bs)
b) A C F~Y(f(A)), and if f is injective, then A = f~1 :
f(f~Y(B)) C B, and if f is surjective, then f(f~!(B)) = B.
f7HUBy) = Uf~1(By), F1(NB:) = Nf~(B))
(UA;) = Uf(A:); F(NA) CNF(A), and if f is injective, then f(NA;) = Nf(A;).
“HY)) =X, fTHB) = 0.
) F(0~) = 0., f(X.) =Y., if f is surjective.
) If f is surjective, then f(A) C f(A). If, furthermore, f is injective, then have f(A) = f(4).

3. Intuitionistic topological spaces
Now we generalize the concept of “intuitionistic fuzzy topological space” to intuitionistic sets:
Definition 3.1. (cf. [7]) An intuitionistic topology (IT for short) on a nonempty set X is a family
7 of IS’s in X satisfying the following axioms:

(T1) P, X~ €,

(Tz) Gi1 NGy € 7 for any G1,G, € T,

(T3) UG; € 7 for any arbitrary family {G; :i€ J} C 7.
In this case the pair (X,7) is called an intuitionistic topological space (ITS for short) and any
IS in 7 is known as an intuitionistic open set (I0S for short) in X.
Example 3.2. Any topological space (X, 7,) is obviously an ITS in the form 7 = {A’ : A € 7.},
whenever we identify a subset A in X with its counterpart A’ =< X, A, A° > as before.
Example 3.3. Let X = {a,b,¢,d, e} and consider the family 7 = {§, X, A1, Az, A3, A4}, where
A; =< X, {a,b,c},{d} >, Ay =< X, {c,d},{e} >, Az =< X,{c},{d,e} >, Ay =< X,{a,b,c,d},0 >.
Then (X, ) is an ITS on X.
Example 3.4. Let (X, 7) be a topological space such that 7 is not indiscrete. Suppose now that
7={0,X}U{G; :i € J}. Then we can construct two IT’s on X as follows:

(@) r'={0., X IU{< X,Gi,0 > i€ J}, By 2 ={0., X }U{< X,0,G¢ >:i e J}.
Proposition 3.5. Let (X, 7) be an ITS on X. Then, we can also construct several ITS’s on X in
the following way:

(a) 70,1 = {[]G: G e}, (b) ma={<>G:Ger}.

Remark 3.6. Let (X, 7) be an ITS.

(a) m = {G' < X,G* G* >€ 7} is a topological space on X. Similarly, k3 = {G? <
X,G',G? >€ 7} is the family of all closed sets of the topological space 7 = {(G?)¢ :< X,G,G? >¢
7} on X.

(b) Since G1 N G? = @ for each G =< X,G,G?) € T, we obtain G* C (G?)° and G? C (G')°.
Hence, we may conclude that (X, 7y, 73) is a bitopological space.

Definition 3.7. Let (X, 7)), (X, ) be two ITS’s on X. Then 71 is said to be contained in 75 (in
symbols, 1 C 73), if G € 7, for each G € 1. In this case, we also say that 71 is coarser than 7.
Proposition 3.8. Let {r; : ¢ € J} be a family of IT’s on X. Then N;cs7; is an IT on X. Furthermore,

Nies7; 1s the coarsest IT on X containing all 7; ’s.

Definition 3.9. Let (X, 7) be an ITS on X.

(a) A family § C 7 is called a base for (X, 7) iff each member of T can written as a union of
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elements of 5.

(b) A family vy C 7 is called a subbase for {X, 7) iff the family of finite intersections of elements
in vy forms a base for (X, 7). In this case the IT 7 is said to be generated by +.

Notice that the IT 7 in Example 3.3 is generated by {A;, A3} if you make use of the equalities
ﬂ,’E@G,’ = X~ and Uie@Gi = 0~.

Example 3.10. Consider the set X = IR and take the family y = {< IR, (a,b), (—00,a] >: a,b € R}
of IS’s in IR. In this case v generates an IT 7 on IR, which is called the “usual left intuitionistic
topology” on IR. The base 8 for this IT can be written in the form 8 = {X.} U~ while 7 consists of
the following 1S’s:

B, Xo;
< IR,U(ai, b;), (—o0, ¢] >, where aj, b;,c € R, {a; : i € J} is bounded from below,
c<inf{a; : 1€ J};
< IR,U(ai,b;), B >, where a;,b; € R, {a; : i € J} is not bounded from below.
Similarly one can define the “usual right intuitionistic topology” on IR, using an analogous construc-
tion.
Example 3.11. Consider again the set X = IR and take the family

7= {< IR': (a,b),(—oo,al] U [bl,OO) > aabaal)bl € ]R')al < aab < bl}

of IS’s in IR. In this case vy generates an IT 7 on IR, which is called the “usual intuitionistic topology”
on IR. The base § for this IT can be written in the form # = yU {X.}. The elements of 7 can be
easily written down as in the previous example.

Definition 3.12. The complement A4 of an I0S A in an ITS (X, 7) is called an intuitionistic closed
set (ICS for short) in X.

Now we define closure and interior operations in ITS’s:

Definition 3.13. (cf. [7]) Let (X, 7) be an ITS and A =< X, A}, A? > be an IS in X. Then the
interior and closure of A are defined by

cl(A) =n{K : Kisan ICS in X and A C K}, int(A) = U{G : Gis an IOS in X and G C A}.

It can be also shown that cl(A) is an ICS and int(A) is an IOS in X, and A is an ICS in X iff
cl(A) = A; and A is an I0S in X iff int(4) = A.

Example 3.14. Consider the ITS (X, 7) defined in Example 3.3. If B =< X, {a,c}, {d} >, then we
can write down int(B) =< X,{c},{d,e} > and cl(B) =< X, X,0 >= X..

Proposition 3.15. For any IFS A in (X, 7) we have: cl(4) = int(A), int(A) = cl(4).
Proposition 3.16. Let (X, 7) be an ITS and A, B be IS’s in X. Then the following properties hold:

Nint(B) (d’) cl(AU B) = cl(A) Ucl(B)
(e) int(X.) = Xo e’) cl(B.) =0
Proposition 3.17. (cf. [7]) Let (X, 7) be an ITS. If A =< X, A!, A% > is an IS in X, then we have

(a) int(A) C A (a’) A C cl(A)
(b) AC B = int(A) C int(B) (b)) AC B =cl(A) C cl(B)
() int(int(A)) = int(A) (¢} cl{cl(A)) = cl(A)
(d) int(AN B) = int(A) (
(

int(A) C< X, int, (A'),cl;,(A?) >C A, AC A< X, cl,(AY),int, (A?) >C cl(4),

where 7y and 72 are the topological spaces on X defined in Remark 3.6.

Example 3.18. Take the ITS (X, 7) in Example 3.3. If B =< X, {a,c},{d} >, then we have
int(B) =< X, {c},{d,e} >. Noting that we have

= {@,X,{a,b,c},{c,d},{c},{a,b,c, d}}v T2 = {@)X!{a’b>c:e}:{a)bxc’ d}:{a>b)c}}
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and intr, ({a,b}) = {c},cl;,({d,e}) = {d}, we see that the inclusions in Proposition 3.17 may be
proper.

4. Intuitionistic continuity
Here come the basic definitions first:

Definition 4.1. (cf. [7]) Let (X, 7) and (Y, ®) be two ITS’s and let f : X — Y be a function. Then
f is said to be continuous iff the preimage of each IS in ® is an IS in .

Definition 4.2. Let (X, 7) and (Y, ®) be two I'TS’s and let f : X — Y be a function. Then f is said
to be open iff the image of each IS in 7 is an IS in ®.

Example 4.3. Let (X,7,), (Y,®,) be two topological spaces.

(a) If f : X =Y is continuous in the usual sense, then in this case, f 1s continuous in the sense
of Definition 4.1, too. Here we consider the IT’s on X and Y, respectively, as follows:

T={<X,G,G°>:G€er,} and ®={<Y,H H* > Hed,)}.
In this case we have, for each < Y, H, H® >€ &, H € 9,
FTU<Y,H, H® >=< X, f7'H), fY(H®) >=< X, f~Y(H), (f"Y(H))® > .

(b) Let f: X — Y be an open function in the usual sense. Then f is also open in the sense of
Definition 4.2.

Now we obtain some characterizations of continuity:
Proposition 4.4. f: (X, 7) — (Y, ®) is continuous iff the preimage of each ICS in & is an ICS in 7.
Proposition 4.5. The following are equivalent to each other:
(a) f: (X, 7) = (Y, ®) is continuous.
(b) f~1(int(B)) C int(f~'(B)) for each IS Bin Y.
(c) ed(f~Y(B)) C f~!(cl(B)) for each IS Bin Y.
Example 4.6. Let (Y, ®) be an ITS, X a nonempty set and f : X — Y a function. In this case

T={f"YH):H € ®}isanIT on X. Indeed, t is the coarsest IT on X which makes the function
f: X =Y continuous. One may call the IT ¢ on X the initial intuitionistic topology with respect to

f.
Proposition 4.7. Let f : (X,7) - (Y, ®) be a continuous function. Then the functions

(a) f:(X,m)— (Y, ®1), (b) f: (X, 1) — (Y, ®3)
are also continuous, where 71, ®1, 71, ®, are the topological spaces defined in Remark 3.6. [In other
words, n = {G' :G €71}, &1 ={H': He @}, 15 = {(G?)°: G €7}, By = {(H?)° : H € B}. where
G=<X,G",G*>and H=<Y,H! H?>]

5. Intuitionistic compactness
First we present the basic concepts:
Definition 5.1. (cf. [7]) Let (X, 7) be an ITS.

(a) If a family {< X, G},G? >: i € J} of I0S’s in X satisfies the condition U{< X,G},G? >:ie
J} = X, then it is called an open cover of X. A finite subfamily of an open cover {< X,G},,G? >:

i € J} of X, which is also an open cover of X, is called a finite subcover of {<X,G},G? >:ie J}.

%

(b) A family {< X, K}, K? >: i € J} of ICSs in X satisfies the finite intersection property
(FIP for short) iff every finite subfamily {< X, K}, K? >: i = 1,2,...,n} of the family satisfies the
condition N < X, K}, K? ># 0.

Definition 5.2. An IFTS (X, 1) is called compact iff each open cover of X has a finite subcover.

Example 5.3. (a) Let X = IN and consider the IS’s A,, given below:
A =< X,{2,3,4,..},0 >, A, =< X, {3,4,5,..},{1} >, A3 =< X, {4,5,6,...},{1,2} >, ...



55

Ap=< X {n+1,n+2,n+3,..},{1,2,3,...0n — 1} >, ...

Then 7= {0, X }U{A,:n=1,2,3,..} isan IT on X and (X, 7) is compact.

(b) Let X = (0,1) and take the IS’s A, =< X,(1,221)(0,1) >, n = 3,4,5,... in X. In this
case 7 = {0, X }U{A, :n=23,4,5,...} is an IT on X which is not compact.

Now we give a proposition stating that compactness in (X, 7) indeed identical to compactness in
(X, Tg)l)l

Proposition 5.4. Let (X,7) be an ITS on X. Then, (X,7) is compact iff the ITS (X, 7,1) is
compact.

Proof. (=:) Let (X, 7) be compact, and consider an open cover {[]G; : j € K} of X in (X,79,1).
Since U([]G;) = X, we obtain UG} = X, and hence, by G C (G})* = NG} C (UG})* =0 =
NG% = 0, we deduce UG; = X... Since (X, ) is compact, 3Gy, Gs, ..., Gy such that U, G; = X
from which we obtain U?_; G} = X and N7, (G?) = §, i.e. (X,7) is compact.

(¢=:) Suppose that (X, 7 ) is compact and consider an open cover {G; : j € K} of X in (X, 7).
Since UGj = X, we obtain UG} = X and N(G})° = §. Since (X, 7,1) is compact, 3G1, Gy, ...,Gn
such that U2, ([]G;) = X, i.e. UL G} = X and N(G})® = 8. Hence G} C (G?)° = X =U,G! C
(N, G2 = NP_G? = 0. Thus U, G; = X.. follows, i.e. (X, ) is compact. O
Proposition 5.4 implies (Notice that we have 11 = {G! :< z,G},G? >€ 7}.):

(X, ) is compact iff (X,70,1) is compact iff (X, ) is compact.
In view of this proposition we can obtain the following results easily:
Corollary 5.5. An ITS (X, 7) is compact iff every family {< X, K} , K2 >:i € J} of ICS’s in X
having the FIP has a nonempty intersection.
Corollary 5.6. Let (X,7), (Y,®) be ITS’s and f : X — Y a continuous surjection. If (X,7) is
compact, then so is (Y, ®).
Since compactness of an ITS (X, 7) is identical to the compactness of the topological space (X, 71),
we must define the compactness of any IS in (X, 7) as follows:
Definition 5.7. Let (X,7) be an ITS and A an IS in X.

(a) If a family {< X,G},G? >:i € J} of I0S’s in X satisfies the condition A C U{< X,G},G? >
) 14 € J}, then it is called an open cover of A. A finite subfamily of an open cover {< X, G}, G? >:
i € J} of A, which is also an open cover of 4, is called a finite subcover of {< X,G},G? >:i € J}.

(b) An IS A =< X, A', A? > in an ITS (X, 7) is called compact iff every open cover of A has a
finite subcover.

Corollary 5.8. An IS A =< X, A', A*> > in (X, 7) is compact iff for each family G = {G; : i € J},
where G; =< X,G},G? >, i € J, of I0S’s in X with the properties A! C U;esG} and A? D N;esG?,
there exists a finite subfamily {G; : i = 1,2,...,n} of G such that A C UG} and A? D N, G2

Example 5.9. Let (X, 7,) be a topological space and A C X a compact set in X in the usual sense.

We can construct an ITS 7 on X as in Example 3.2. Now the IFS A’ =< X, A, A® > is also compact
in (X, 7).

Example 5.10. Consider the usual left IT 7 on X = IR defined in Example 3.10. The IS A =<
X,[0,1],(—o0,0) > is compact, but the following IS’s B and C are not compact:

B =< R,[0,1],(-1,0) >, C =< R, [0,1],(1,2) > .
Corollary 5.11. Let (X,7), (Y,®) be ITS’s and f : X — Y a continuous function. If A is compact
in (X, 7), then so is f(A) in (Y, ®).
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