Stratiform Closed Sets in L-fuzzy Topological Spaces*

Guan Enrui

Department of Mathematics and Systems Science, Liaocheng Teachers University,

Shandong 252059, P.R. China. E-mail: math@lctu.edu.cn

Abstract

Given an L-fuzzy topological space (L^x, δ) , for each molecule α of

 L, α -closed sets which called stratiform closed sets are presented, and the

properties of the sets are discussed.

Keywords: Fuzzy topology, stratiform set

Can closed sets in L-fuzzy topological spaces be replaced in a manner

by something which like closed sets but are not closed sets? This is a

question warranting careful consideration. In this paper, the concept of

 $D\alpha$ -closed sets is introduced in L-fuzzy topological spaces. Though these

 $D\alpha$ -closed sets are not, in general, closed sets, but they display some

characteristics of closed sets on a certain stratum.Our discussion show

that $D\alpha$ -closed sets sometime may replace closed sets.

The notions and symbols used in paper follows [1]

Definition 1. Let (L^x, δ) be an L-fts, $\alpha \in M(L)$. The operator $D_\alpha : L^x \to \delta'$

^{*} Supported by the Natural Science Foundation of Shandong of China

is defined as follows: for each $A \in L^X$, $D_{\alpha}(A) = \wedge \{G \in \delta' : G_{[\alpha]} \supset A_{[\alpha]} \}$.

Example 2. (1) For L-fts (L^X, δ) , where $\delta = \{0_X, 1_X\}$. Take $\alpha \in M(L)$ and $\alpha \neq 1, A = \alpha_X$. Then $D_{\alpha}(A) = 1_X > A$.

- (2) For L-fts (L^X, δ) , where $\delta = \{\alpha_X : \alpha \in L\}$. Take $\alpha \in M(L)$, $A = \alpha_X$. Then $D_{\alpha}(A) = \alpha_X = A$.
- (3) Take L = X = [0,1], and $\delta = \{\lambda_X : \lambda \in L\}$, then (L^X, δ) is an L-fts. $A \in L^X$ is defined by A(x) = x. Take $\alpha = 0.5 \in M(L)$, then $D_{\alpha}(A) = 0.5_X$. Clearly $D_{\alpha}(A) \le A$ and $D_{\alpha}(A) \ge A$.

Theorem 3. Let (L^X, δ) be an L-fts, $\alpha \in M(L)$. The operator D_α has the following properties: $\forall A, B \in L^X$.

- (1) $D_{\alpha}(0_X) = 0_X$;
- (2) $D_{\alpha}(A \vee B) = D_{\alpha}(A) \vee D_{\alpha}(B);$
- (3) $A_{[\alpha]} \subset (D_{\alpha}(A))_{[\alpha]};$
- (4) $D_{\alpha}(D_{\alpha}(A)) = D_{\alpha}(A)$.

Proof. (1) It is clear.

(2) If $A \le B$, then $A_{[\alpha]} \subset B_{[\alpha]}$. Hence

$$D_{\alpha}(B) = \wedge \{G \in \delta' : G_{[\alpha]} \supset B_{[\alpha]}\} \geq \wedge \{G \in \delta' : G_{[\alpha]} \supset A_{[\alpha]}\} = D_{\alpha}(A) \,.$$

From this we get $D_{\alpha}(A \vee B) \ge D_{\alpha}(A) \vee D_{\alpha}(B)$. On the other hand,

$$\begin{split} D_{\alpha}(A) \vee D_{\alpha}(B) &= (\wedge \{G \in \delta' : G_{[\alpha]} \supset A_{[\alpha]}\}) \vee (\wedge \{H \in \delta' : H_{[\alpha]} \supset B_{[\alpha]}\}) \\ &= \wedge \{G \vee H \in \delta' : G_{[\alpha]} \supset A_{[\alpha]}, H_{[\alpha]} \supset B_{[\alpha]}\} \\ &\geq \wedge \{E \in \delta' : E_{[\alpha]} \supset A_{[\alpha]} \cup B_{[\alpha]}\} \\ &= D_{\alpha}(A \vee B) \end{split}$$

Therefore $D_{\alpha}(A \vee B) = D_{\alpha}(A) \vee D_{\alpha}(B)$.

$$(3) \quad (D_{\alpha}(A))_{[\alpha]} = \bigcap \{G_{[\alpha]} : G \in \delta', G_{[\alpha]} \supset A_{[\alpha]}\} \supset A_{[\alpha]}.$$

(4) From $(D_{\alpha}(A))_{[\alpha]} \supset A_{[\alpha]}$ we get

$$D_{\alpha}(D_{\alpha}(A)) = \wedge \{G \in \delta' : G_{[\alpha]} \supset (D_{\alpha}(A))_{[\alpha]}\} \geq \wedge \{G \in \delta' : G_{[\alpha]} \supset A_{[\alpha]}\} = D_{\alpha}(A).$$

Also, from $D_{\alpha}(A)$ is closed and $(D_{\alpha}(A))_{[\alpha]} \supset (D_{\alpha}(A))_{[\alpha]}$ we get $D_{\alpha}(D_{\alpha}(A)) = \wedge \{G \in \delta' : G_{[\alpha]} \supset (D_{\alpha}(A))_{[\alpha]} \} \leq D_{\alpha}(A).$

Hence $D_{\alpha}(D_{\alpha}(A)) = D_{\alpha}(A)$.

Definition 4. Let (L^X, δ) be an L-fts, $\alpha \in M(L)$, $A \in L^X$ is called $D\alpha$ -closed in (L^X, δ) , if $(D_\alpha(A))_{[\alpha]} = A_{[\alpha]}$. The set of all $D\alpha$ -closed sets in (L^X, δ) is denoted by $D_\alpha(\delta)$.

Theorem 5. Let (L^X, δ) be an L-fts, $A \in L^X$. If $A \in \delta'$, then for each $\alpha \in M(L), A \in D_{\alpha}(\delta)$, i.e., $\delta' \subset D_{\alpha}(\delta)$.

Example 6. Let L = [0,1] and X a nonempty crisp set. Take $\delta = \{0_X, 1_X\}$, then (L^X, δ) is a fuzzy topological space. We consider $A = 0.5_X$. Naturally A is not closed set in (L^X, δ) , but for each $\alpha \in M(L)$, $A \in D_\alpha(\delta)$.

Li Yongming has presented in [2] the concept of α -closed set for L-fts as follows:

Let (L^x, δ) be an L-fts, $A \in L^x$, $\alpha \in M(L)$. A is called α -closed set in (L^x, δ) , if for any $x_{\alpha} \in A^-$ we have $x_{\alpha} \in A$.

The set of all α -closed sets in (L^{χ}, δ) is denoted by $L_{\alpha}(\delta)$.

It is clear that $A \in L_{\alpha}(\delta)$ iff $(A^{-})_{[\alpha]} = A_{[\alpha]}$.

Theorem 7. Let (L^x, δ) be an L-fts, $A \in L^x$. Then for each $\alpha \in M(L)$ we

have $L_{\alpha}(\delta) \subset D_{\alpha}(\delta)$, that is, α -closed sets are $D\alpha$ -closed sets.

Example 8. Take X = L = [0,1]. Let H_k denote line segment: y = kx, where $x \in [0,1]$, k is the slope and $0 \le k \le 1$. Let $\delta' = \{1_X, H_k : 0 \le k \le 1\}$, then δ' clearly is an L-fuzzy co-topology on X. $A \in L^X$ is defined by A(x) = 0.25 for $x \in [0,0.5)$ and A(x) = 0.5 for $x \in [0.5,1]$. Take $\alpha = 0.5$. then for (L^X, δ) we have

$$\begin{split} A_{[0.5]} &= [0.5,1]; A^- = 1_X; (A^-)_{[0.5]} = X \neq A_{[0.5]}. \\ D_{0.5}(A) &= \wedge \{G \in \delta' : G_{[0.5]} \supset A_{[0.5]}\} = 1_X \wedge H_1 = H_1 \ . \\ (D_{0.5}(A))_{[0.5]} &= [0.5,1] = A_{[0.5]} \ . \end{split}$$

Hence A is D0.5-closed and not 0.5-closed. This shows that the converse of Theorem 7 is ,in general, false.

From Theorem 3 (4) we easily see that

Theorem 9. Let (L^x, δ) be an L-fts, $A \in L^x$. Then for each $\alpha \in M(L)$, $D_{\alpha}(A) \in D_{\alpha}(\delta)$.

Theorem 10. Let (L^X, δ) be an L-fts. Then for each $\alpha \in M(L)$, $D_{\alpha}(\delta)$ forms an L-fuzzy co-topology on X.

Theorem 11. Let $(L^X, \omega_L(\tau))$ be an L-fts induced by crisp topological space $(X, \tau), A \in L^X, \alpha \in M(L)$. Then $A \in D_{\alpha}(\omega_L(\tau))$ iff $A_{[\alpha]} \in \tau'$.

Proof. Suppose that $A \in D_{\alpha}(\omega_L(\tau))$, i.e., $(D_{\alpha}(A))_{[\alpha]} = A_{[\alpha]}$. For each $G \in (\omega_L(\tau))'$ we see that $G_{[\alpha]} \in \tau'$. Hence

$$\begin{split} A_{[\alpha]} &= (D_{\alpha}(A))_{[\alpha]} = (\wedge \{G \in (\omega_L(\tau))' : G_{[\alpha]} \supset A_{[\alpha]} \})_{[\alpha]} \\ &= \bigcap \{G_{[\alpha]} : G \in (\omega_L(\tau))', G_{[\alpha]} \supset A_{[\alpha]} \} \end{split}$$

$$\supset \bigcap \{E \in \tau' : E \supset A_{[\alpha]}\} = (A_{[\alpha]})^-.$$

This shows that $A_{[\alpha]} = (A_{[\alpha]})^{-}$, and so $A_{[\alpha]} \in \tau'$.

Conversely, assume that $A_{[\alpha]} \in \tau'$. From Theorem 2.11.6 in [1] we have $\chi_{A_{[\alpha]}} \in (\omega_L(\tau))'$. Also, $(\chi_{A_{[\alpha]}})_{[\alpha]} = A_{[\alpha]}$, thus

$$(D_{\alpha}(A))_{[\alpha]} = \bigcap \{G_{[\alpha]}: G_{[\alpha]} \supset A_{[\alpha]}, G \in (\omega_L(\tau))'\} \subset A_{[\alpha]}.$$

Hence $(D_{\alpha}(A))_{[\alpha]} = A_{[\alpha]}$, and so $A \in D_{\alpha}(\omega_L(\tau))$.

Corollary 12. Let $(L^X, \omega_L(\tau))$ be an L-fts induced by crisp topological space $(X, \tau), A \in L^X$. Then $A \in (\omega_L(\tau))'$ iff for each $\alpha \in M(L), A \in D_\alpha(\omega_L(\tau))$.

References

- [1] Wang Guojun, The Theory of L-fuzzy Topological Spaces (Shanxi Normal University Press, Xi'an, China, 1988) (in Chinese).
- [2] Li Yongming, Theory of L-fuzzy closed graph and strong closed graph, Fuzzy Systems and Math.2(1991) 30-37 (in Chinese).