Fuzzy module over fuzzy algebra

Sun Shiquan Zhong Hongxin

Department of Mathematics, Liaocheng Teachers' College, Shandong, 252059, China

Abstract:

In this paper, we will introduce the concepts of fuzzy modules over fuzzy algebra and discuss the important properties of it.

Keywords:

algebra, algebra module, fuzzy set, level subset, lattice, complete lattice, homomorphism, fuzzy module over fuzzy alyebra.

1. Fuzzy modules over fuzzy algebra and its operations.

Let X be any set and L a bounded lattice with 1 and 0, then a fuzzy set V_x in X is charalterized by a mapping $V_x: X \rightarrow L$. The set

$$V_{X_{\alpha}} = \{x \in X \mid V_{X}(x) \geqslant \alpha\}$$

is called a level subset of X with respect to V_x , where $\alpha \in L$.

Unlesss specially stated, M in this article only refers to the left module ove algebra A, in brief, M is an A – module, where A is an algebra over field F.

Definition1.1. Let A be an algebra over field F, then fuzzy subset V_A of A is called a fuzzy algebra of if for all $a_1, a_2, \in A$, and $\alpha \in F$, we have

- 1) $V_A(a_1 a_2) \geqslant V_A(a_1) \wedge V_A(a_2)$,
- 2) $V_A(a_1a_2) \geqslant V_A(a_1) \wedge A(a_2)$,
- $3V_A(\alpha a_1) \geqslant V_A(a_1),$
- $4)V_A(0)=1.$

Definition 1.2. The fuzzy subset V_M of M is called module over fuzzy alyebra A, if for all m_1 , $m_2 \in M$, $a \in A$, We have

- 1) $V_M(x-y) \geqslant V_M(x) \wedge V_M(y)$,
- $2) V_M(0) = 1,$
- 3) $V_M(ax) \geqslant V_A(a) \wedge V_M(x)$.

In brief V_M is a V_A - fuzzy module.

Definition 1.3. Let M a A – module, C_M , B_M are fuzzy subset of M, $\alpha \in A$, definition fuzzy subset of M: $C_M \cap B_M$, $C_M + B_M$, aC_M , $-C_M$, for $x \in M$, they make

$$(C_M \cap B_M)(x) = C_M(x) \wedge B_M(x),$$

$$(C_M + B_M)(x) = \bigvee_{x_1 + x_2 = x} [C_M(x_1) \wedge B_M(x_2)],$$

$$(aC_M)(x) = \bigvee_{ax_1 = x} C_M(x_2)$$

 $(-C_M)(x) = C_M(-x).$

Similar to Theorem 1.1-1.3, We can easily prove the following Theorem 1.1-1.3.

Theorem1.1 Let V_A be a fuzzy algebra of algebra A and V_M be a fuzzy subset of A – module M, then V_M is a V_A – fuzzy module iff all $\alpha \in L$, V_{M_α} is alyebra module over aclgebra V_A .

Theorem 1.2. Let L be a complete lattice, the fuzzy subset V_M of M is a V_A - fuzzy module iff there is a subalgebra family

$$\{Y_a \mid a \in L, Y_a \text{ is a subalgebra of } A, \bigcap_{\substack{a \in H \\ H \subseteq L}} Y_a \subseteq Y_{suppH} \}$$

and subset family

$$\{X_{\alpha} \mid \alpha \in L, X_{\alpha} \subseteq M, \bigcap_{\substack{\alpha \in H \\ b \in I}} X_{\alpha} \subseteq X_{suppH}\},$$

this makes X_{α} that is an additive subgroup, in particular if $\alpha \leqslant \sup_{\alpha \in \Lambda} V_{\Lambda}(a)$, then X_{α} is an A-module, and $V_{A} = \bigcup_{\alpha \in L} \alpha \cdot \tilde{Y}_{\alpha}$ $V_{M} = \bigcup_{\alpha \in L} \alpha \cdot \tilde{X}_{\alpha}$, here \tilde{Y}_{α} and \tilde{X}_{α} respectively indicate characteristic functions of Y_{α} and X_{α} .

Wheorem1.3. Let L be a complete lattice, then $\bigcap_{k\in I}V_M^{(k)}$ is a V_A - fuzzy submodule, here $\{V_M^{(k)}\}_{k\in I}$ is a family of V_A - fuzzy submodule. if L is a fimite set, then for any $\alpha\in L$, $(\bigcap_{k\in I}V_M^{(k)})_{\alpha}=\bigcap_{k\in I}V_M^{(k)}$

Proposition 1.4. Let C is a fuzzy set of X, for all $x \in X$, let

$$J_{\tau} = \{ \alpha \mid \alpha \in C_{\alpha} \}$$

then J_x is the ideal of L which is generated by c(x), and $c(x) = \sup J_x$.

Proposition 1.5. Let V_M be a V_A – module of M, then for all $x, y \in M$, $a \in A$, $J_{-x} \geqslant J_x$, $J_{x+y} \geqslant J_x \cap J_y$, $J_{ax} \geqslant J_x \cap J_a$, where J_x , J_{x+y} , J_{-x} , J_a , are ideals of l which is defined by Proposition 1.4.

Proof. The proof is similar to Proposition 1.6 of [3].

Theorem1.6. Let V_M is fuzzy set of M, then V_M is a V_A - module iff

$$(1) \underset{x \in M}{\bigvee} B_M(x) = 1$$

$$(2)J_{-x} \geqslant J_x, J_{x+y} \geqslant J_x \cap J_y, J_{ax} \geqslant J_x \cap J_a, \text{ for all } x, y \in M, a \in R.$$

Proof. If V_M is a V_A - module, it is easy to prove (1) and (2). Coversely, we prove that V_M is an V_A - fuzzy module.

In virtue of Proposition1.4 $V_M(x) = \sup_x$, so $V_M(x+y) \ge \sup_{x+y} \sup_y < V_M(x) \land V_M(y) > V_M(x) \land V_M(y)$,

$$V_M(ax) \geqslant \sup_{a} J_{ax} \geqslant \sup_{a} A \sup_{a} V_M(a) \wedge V_M(a),$$

 $V_M(-x) \geqslant \sup_{x} J_{-x} \geqslant \sup_{x} J_x = V_M(x)$

for al $x, y \in M, \alpha \in A$

For all $x \in M$, 0 = 0. x, thas $V_M(0) = V_M(0, x) \geqslant V_M(x)$, hence $V_M(0) \geqslant \bigvee_{x \in M} V_M(x) = 1$, there fore V_M is a V_A - fuzzy module

Theorem1.7 Let C_M , B_M are V_A – fuzzy module of M, then $C_M + B_M$ is a V_A – fuzzy module of M.

Theorem 1.7 can be easily drawn.

2 Relation of fuzzy submodules between homomorphism mrodules.

Let M and N be two A-module, f is a homomorphism mapping from M to N, V_A is a fvzzy algebra of A.S(M) and S(N) stands for the set composed of all the V_M -fuzzy module of M and N respectively. Let $V_M \in S(M)$, them $f(V_M)$ is defined by:

$$f(V_M)(x') \geqslant \begin{cases} \bigvee \{V_M(x) \mid x \in f^{-1}(x'), f^{-1} \neq (x') \neq \emptyset \} \\ 0 \text{ if } f^{-1}(x) = \emptyset \end{cases}$$

for all $x' \in N$. Let $V_N \in S(N)$, then $f^{-1}(V_N)$ is defined by:

$$f^{-1}(V_M)(x) = V_N(f(x))$$

for all $x \in M$.

Lemma 2.1. Let $V_M, V_M^1, V_M^2 \in S(M), V_N, V_N^1, V_N^2 \in S(M')$, then

- $(1)f(V_N)(0') = 1$, where 0' stands for zero of N,
- $(2)f(f^{-1}(V_N)) = V_N,$
- (3) If $V_M^1 \subseteq V_M^2$, then $f(V_M^1) \subseteq f(V_m^2)$,
- (4) If $V_N^1 \subseteq V_N^2$, then $f^{-1}(V_N^1) \subseteq f^{-1}(V_N^2)$,
- $(5)f(V_M^1 \cap V_M^2) = f(V_M^1) \cap f(V_M^2),$
- (6) If V_M^1 and V_M^2 are all constant 1 on Kerf, then $f(V_M^1 + V_M^2) = f(V_M^1) + f(V_M^2)$,
- (7) If $V_N = f(V_M)$, V_M is constant 1 on Kerf, then $V_M = f^{-1}(V_N)$,
- $(8)f(V_{M_{\bullet}})\subseteq (f(V_{M})_{\circ})$
- (9) If V_M is constant 1 on kerf, then for and $x \in M$, we have $f(V_M)(f(x)) = V_M(x)$.

Theorem 2.1. If $V_M \in S(M)$, $V_N \in S(N)$, then

- (1)f⁻¹(V_N) is a V_A-fuzzy module of M and constant 1 on kerf,
- $(2)f^{-1}(V_{N_n}) = (f^{-1}(V_N))_{\circ},$
- (3) If V_M is constant 1 on kerf, then $f^{-1}(f(V_M)) = V_M$.

Lemma 2.2 Let L be a complete lattice, M and N are two A - modules, $f: M \to N$ is an epimorphism, then if V_M is a $V_A - \text{fuzzy}$ module of M, then $f(V_M)$ is a $V_A - \text{fuzzy}$ module, and furthermore, if V_N is constant 1 on kerf, then $f(V_{M_n}) = (f(V_M))_0$.

Proof Because V_M is V_A - fuzzy module, then for any $x', y' \in N$ and $a \in A$,

$$\begin{split} f(V_{M})(x'-y') &= \{V_{M}(z) | z \in f^{-1}(x'-y') \\ &\geqslant \bigvee \{V_{M}(x-y) | x \in f^{-1}(x'), y \in f^{-1}(y') \\ &= (\bigvee \{V_{m}(x) | x \in f^{-1}(x') \land (\bigvee \{V_{M}(y) | y \in f^{-1}(y') \\ &= f(V_{M})(x') \land f(V_{m})(y'), \\ f(V_{M})(ax') &= \bigvee \{V_{M}(z) | z \in f^{-1}(ax') \} \geqslant \bigvee \{V_{M}(ax) | x \in f^{-1}(x') \} \\ &\geqslant \bigvee \{V_{M}(x) \land V_{A}(a) | x \in f^{-1}(x') \} \\ &= V_{A}(a) \land (\bigvee \{V_{M}(x) | x \in f^{-1}(x') \} \\ &= V_{A}(a) \land f(V_{M})(x') \end{split}$$

By lemma 2.1. We have $f(V_M)(0') = 1$, consequently $f(V_M)$ is a V_R -fuzzy module.

If $x' \in (f(V_M))_0$, then $f(V_M)(x') = 1$ because f is epinorphism, so $\exists x \in M$, it makes f(x) = x'. According to Lemma 2.1 we get $f(V_M)(x') = f(V_M)$, $f(x) = V_M(x) = 1$, thas x' = f(x), $x \in V_{M_0}$, and $x' \in f(V_M)$, ie, $(f^1(V_M))_0 \subseteq f(V_M)_0$, therefore $(f(V_M))_0 = f(V_M)$

Theorem 2.2 let M and N be two left modules over ring K, f: $M \rightarrow N'$ is am epimorphism and L is a complete distributive lattice, then there is a one—to—one order preserving correspondence between the V_A —fuzzy modules of M and these of N which are constant 1 on Kerf.

Proof Let K(M) be the set of all V_A – fuzzy module of M which are constant 1 on Kerf. Let $\varphi: K(M) \to S(N)$ and $\varphi: S(N) \to K(M)$ be defined as $\varphi(V_M) = f(V_M)$ and $\varphi(V_N) = f^{-1}(V_N)$.

References

- [1]L.A Zadeh, Fuzzy sets, Inform and Control 8(1965) 338-353.
- [2]Zhao Jianli, Fuzzy Modules Over Fuzzy Rings, The J. Fuzzy. Math. 1(1993), 531-539.
- [3] Zhao Jinali, F_R^A modules and F_R^A modules categories, The J. Fuzzy Math 3 (1997), 145 158.